Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 337
Filtrar
1.
Phytomedicine ; 128: 155493, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38484626

RESUMO

BACKGROUND: ID3 (inhibitor of DNA binding/differentiation-3) is a transcription factor that enables metastasis by promoting stem cell-like properties in endothelial and tumor cells. The milk thistle flavonolignan silibinin is a phytochemical with anti-metastatic potential through largely unknown mechanisms. HYPOTHESIS/PURPOSE: We have mechanistically investigated the ability of silibinin to inhibit the aberrant activation of ID3 in brain endothelium and non-small cell lung cancer (NSCLC) models. METHODS: Bioinformatic analyses were performed to investigate the co-expression correlation between ID3 and bone morphogenic protein (BMP) ligands/BMP receptors (BMPRs) genes in NSCLC patient datasets. ID3 expression was assessed by immunoblotting and qRT-PCR. Luciferase reporter assays were used to evaluate the gene sequences targeted by silibinin to regulate ID3 transcription. In silico computational modeling and LanthaScreen TR-FRET kinase assays were used to characterize and validate the BMPR inhibitory activity of silibinin. Tumor tissues from NSCLC xenograft models treated with oral silibinin were used to evaluate the in vivo anti-ID3 effects of silibinin. RESULTS: Analysis of lung cancer patient datasets revealed a top-ranked positive association of ID3 with the BMP9 endothelial receptor ACVRL1/ALK1 and the BMP ligand BMP6. Silibinin treatment blocked the BMP9-induced activation of the ALK1-phospho-SMAD1/5-ID3 axis in brain endothelial cells. Constitutive, acquired, and adaptive expression of ID3 in NSCLC cells were all significantly downregulated in response to silibinin. Silibinin blocked ID3 transcription via BMP-responsive elements in ID3 gene enhancers. Silibinin inhibited the kinase activities of BMPRs in the micromolar range, with the lower IC50 values occurring against ACVRL1/ALK1 and BMPR2. In an in vivo NSCLC xenograft model, tumoral overexpression of ID3 was completely suppressed by systematically achievable oral doses of silibinin. CONCLUSIONS: ID3 is a largely undruggable metastasis-promoting transcription factor. Silibinin is a novel suppressor of ID3 that may be explored as a novel therapeutic approach to interfere with the metastatic dissemination capacity of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proteínas Inibidoras de Diferenciação , Neoplasias Pulmonares , Proteínas de Neoplasias , Silibina , Silibina/farmacologia , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Humanos , Animais , Linhagem Celular Tumoral , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Camundongos Nus , Receptores de Ativinas Tipo I/metabolismo , Receptores de Ativinas Tipo I/genética , Silimarina/farmacologia , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína Morfogenética Óssea 6 , Silybum marianum/química , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Feminino
2.
bioRxiv ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38328196

RESUMO

The cardiovascular system generates and responds to mechanical forces. The heartbeat pumps blood through a network of vascular tubes, which adjust their caliber in response to the hemodynamic environment. However, how endothelial cells in the developing vascular system integrate inputs from circulatory forces into signaling pathways to define vessel caliber is poorly understood. Using vertebrate embryos and in vitro-assembled microvascular networks of human endothelial cells as models, flow and genetic manipulations, and custom software, we reveal that Plexin-D1, an endothelial Semaphorin receptor critical for angiogenic guidance, employs its mechanosensing activity to serve as a crucial positive regulator of the Dorsal Aorta's (DA) caliber. We also uncover that the flow-responsive transcription factor KLF2 acts as a paramount mechanosensitive effector of Plexin-D1 that enlarges endothelial cells to widen the vessel. These findings illuminate the molecular and cellular mechanisms orchestrating the interplay between cardiovascular development and hemodynamic forces.

3.
Mol Oncol ; 18(3): 479-516, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38158755

RESUMO

The initial excitement generated more than two decades ago by the discovery of drugs targeting fatty acid synthase (FASN)-catalyzed de novo lipogenesis for cancer therapy was short-lived. However, the advent of the first clinical-grade FASN inhibitor (TVB-2640; denifanstat), which is currently being studied in various phase II trials, and the exciting advances in understanding the FASN signalome are fueling a renewed interest in FASN-targeted strategies for the treatment and prevention of cancer. Here, we provide a detailed overview of how FASN can drive phenotypic plasticity and cell fate decisions, mitochondrial regulation of cell death, immune escape and organ-specific metastatic potential. We then present a variety of FASN-targeted therapeutic approaches that address the major challenges facing FASN therapy. These include limitations of current FASN inhibitors and the lack of precision tools to maximize the therapeutic potential of FASN inhibitors in the clinic. Rethinking the role of FASN as a signal transducer in cancer pathogenesis may provide molecularly driven strategies to optimize FASN as a long-awaited target for cancer therapeutics.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Medicina de Precisão , Ácido Graxo Sintases/metabolismo , Ácido Graxo Sintases/uso terapêutico , Morte Celular , Linhagem Celular Tumoral , Ácido Graxo Sintase Tipo I/genética
4.
Clin Nutr ; 43(1): 246-258, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101315

RESUMO

BACKGROUND: The relationship between lipid mediators and severe obesity remains unclear. Our study investigates the impact of severe obesity on plasma concentrations of oxylipins and fatty acids and explores the consequences of weight loss. METHODS: In the clinical trial identifier NCT05554224 study, 116 patients with severe obesity and 63 overweight/obese healthy controls matched for age and sex (≈2:1) provided plasma. To assess the effect of surgically induced weight loss, we requested paired plasma samples from 44 patients undergoing laparoscopic sleeve gastrectomy one year after the procedure. Oxylipins were measured using ultra-high-pressure liquid chromatography coupled to a triple quadrupole mass spectrometer via semi-targeted lipidomics. Cytokines and markers of interorgan crosstalk were measured using enzyme-linked immunosorbent assays. RESULTS: We observed significantly elevated levels of circulating fatty acids and oxylipins in patients with severe obesity compared to their metabolically healthier overweight/obese counterparts. Our findings indicated that sex and liver disease were not confounding factors, but we observed weak correlations in plasma with circulating adipokines, suggesting the influence of adipose tissue. Importantly, while weight loss restored the balance in circulating fatty acids, it did not fully normalize the oxylipin profile. Before surgery, oxylipins derived from lipoxygenase activity, such as 12-HETE, 11-HDoHE, 14-HDoHE, and 12-HEPE, were predominant. However, one year following laparoscopic sleeve gastrectomy, we observed a complex shift in the oxylipin profile, favoring species from the cyclooxygenase pathway, particularly proinflammatory prostanoids like TXB2, PGE2, PGD2, and 12-HHTrE. This transformation appears to be linked to a reduction in adiposity, underscoring the role of lipid turnover in the development of metabolic disorders associated with severe obesity. CONCLUSIONS: Despite the reduction in fatty acid levels associated with weight loss, the oxylipin profile shifts towards a predominance of more proinflammatory species. These observations underscore the significance of seeking mechanistic approaches to address severe obesity and emphasize the importance of closely monitoring the metabolic adaptations after weight loss.


Assuntos
Obesidade Mórbida , Oxilipinas , Humanos , Ácidos Graxos , Obesidade , Obesidade Mórbida/cirurgia , Sobrepeso , Redução de Peso
5.
Sensors (Basel) ; 23(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38139524

RESUMO

The Compact Muon Solenoid (CMS) experiment is a general-purpose detector for high-energy collision at the Large Hadron Collider (LHC) at CERN. It employs an online data quality monitoring (DQM) system to promptly spot and diagnose particle data acquisition problems to avoid data quality loss. In this study, we present a semi-supervised spatio-temporal anomaly detection (AD) monitoring system for the physics particle reading channels of the Hadron Calorimeter (HCAL) of the CMS using three-dimensional digi-occupancy map data of the DQM. We propose the GraphSTAD system, which employs convolutional and graph neural networks to learn local spatial characteristics induced by particles traversing the detector and the global behavior owing to shared backend circuit connections and housing boxes of the channels, respectively. Recurrent neural networks capture the temporal evolution of the extracted spatial features. We validate the accuracy of the proposed AD system in capturing diverse channel fault types using the LHC collision data sets. The GraphSTAD system achieves production-level accuracy and is being integrated into the CMS core production system for real-time monitoring of the HCAL. We provide a quantitative performance comparison with alternative benchmark models to demonstrate the promising leverage of the presented system.

7.
Eur J Crim Pol Res ; : 1-21, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37361423

RESUMO

The study explores in depth the relationship between missing persons' psychosocial and criminological characteristics/circumstances and violent-fatal outcomes (suicide and homicide). A relational analytical explicative study of 929 cases and controls was designed using a retrospective and stratified design. Data gathering was conducted through the content analysis of judicial and police information, as well as the development of psychological autopsy techniques and semi-structured interviews with the persons involved in the missing person cases including offenders in prison. Bivariate and multivariate statistical techniques were utilised for analyses. The findings showed that there are different risk and protective factors which can distinguish between good state of health, suicide, and homicide outcomes. This research entails implications for prevention and police risk assessment system.

8.
Phys Rev Lett ; 130(13): 131902, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37067325

RESUMO

Lepton-flavor-violating decays of light pseudoscalars, P=π^{0},η,η^{'}→µe, are stringently suppressed in the standard model up to tiny contributions from neutrino oscillations, so that their observation would be a clear indication for physics beyond the standard model. However, in effective field theory such decays proceed via axial-vector, pseudoscalar, or gluonic operators, which are, at the same time, probed in spin-dependent µâ†’e conversion in nuclei. We derive master formulas that connect both processes in a model-independent way in terms of Wilson coefficients and study the implications of current µâ†’e limits in titanium for the P→µe decays. We find that these indirect limits surpass direct ones by many orders of magnitude.

9.
Cancers (Basel) ; 14(24)2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36551587

RESUMO

Epithelial-to-mesenchymal transition (EMT) may drive the escape of ALK-rearranged non-small-cell lung cancer (NSCLC) tumors from ALK-tyrosine kinase inhibitors (TKIs). We investigated whether first-generation ALK-TKI therapy-induced EMT promotes cross-resistance to new-generation ALK-TKIs and whether this could be circumvented by the flavonolignan silibinin, an EMT inhibitor. ALK-rearranged NSCLC cells acquiring a bona fide EMT phenotype upon chronic exposure to the first-generation ALK-TKI crizotinib exhibited increased resistance to second-generation brigatinib and were fully refractory to third-generation lorlatinib. Such cross-resistance to new-generation ALK-TKIs, which was partially recapitulated upon chronic TGFß stimulation, was less pronounced in ALK-rearranged NSCLC cells solely acquiring a partial/hybrid E/M transition state. Silibinin overcame EMT-induced resistance to brigatinib and lorlatinib and restored their efficacy involving the transforming growth factor-beta (TGFß)/SMAD signaling pathway. Silibinin deactivated TGFß-regulated SMAD2/3 phosphorylation and suppressed the transcriptional activation of genes under the control of SMAD binding elements. Computational modeling studies and kinase binding assays predicted a targeted inhibitory binding of silibinin to the ATP-binding pocket of TGFß type-1 receptor 1 (TGFBR1) and TGFBR2 but solely at the two-digit micromolar range. A secretome profiling confirmed the ability of silibinin to normalize the augmented release of TGFß into the extracellular fluid of ALK-TKIs-resistant NSCLC cells and reduce constitutive and inducible SMAD2/3 phosphorylation occurring in the presence of ALK-TKIs. In summary, the ab initio plasticity along the EMT spectrum may explain the propensity of ALK-rearranged NSCLC cells to acquire resistance to new-generation ALK-TKIs, a phenomenon that could be abrogated by the silibinin-driven attenuation of the TGFß/SMAD signaling axis in mesenchymal ALK-rearranged NSCLC cells.

10.
Cancers (Basel) ; 14(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36551699

RESUMO

Epithelial-to-mesenchymal transition (EMT) is key to tumor aggressiveness, therapy resistance, and immune escape in breast cancer. Because metabolic traits might be involved along the EMT continuum, we investigated whether human breast epithelial cells engineered to stably acquire a mesenchymal phenotype in non-tumorigenic and H-RasV12-driven tumorigenic backgrounds possess unique metabolic fingerprints. We profiled mitochondrial-cytosolic bioenergetic and one-carbon (1C) metabolites by metabolomic analysis, and then questioned the utilization of different mitochondrial substrates by EMT mitochondria and their sensitivity to mitochondria-centered inhibitors. "Upper" and "lower" glycolysis were the preferred glucose fluxes activated by EMT in non-tumorigenic and tumorigenic backgrounds, respectively. EMT in non-tumorigenic and tumorigenic backgrounds could be distinguished by the differential contribution of the homocysteine-methionine 1C cycle to the transsulfuration pathway. Both non-tumorigenic and tumorigenic EMT-activated cells showed elevated mitochondrial utilization of glycolysis end-products such as lactic acid, ß-oxidation substrates including palmitoyl-carnitine, and tricarboxylic acid pathway substrates such as succinic acid. Notably, mitochondria in tumorigenic EMT cells distinctively exhibited a significant alteration in the electron flow intensity from succinate to mitochondrial complex III as they were highly refractory to the inhibitory effects of antimycin A and myxothiazol. Our results show that the bioenergetic/1C metabolic signature, the utilization rates of preferred mitochondrial substrates, and sensitivity to mitochondrial drugs significantly differs upon execution of EMT in non-tumorigenic and tumorigenic backgrounds, which could help to resolve the relationship between EMT, malignancy, and therapeutic resistance in breast cancer.

11.
Aging (Albany NY) ; 15(4): 892-897, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36490309

RESUMO

The mitokine MOTS-c is a mitochondrially-encoded "exercise-mimetic peptide" expressed in multiple tissues, particularly skeletal muscles, which can be detected as a circulating hormone in the blood. MOTS-c mechanisms of action (MoA) involve insulin sensitization, enhanced glucose utilization, suppression of mitochondrial respiration, and targeting of the folate-AICAR-AMPK pathway. Although MOTS-c MoA largely overlap those of the anti-diabetic biguanide metformin, the putative regulatory actions of metformin on MOTS-c have not yet been evaluated in detail. Here, we measured circulating MOTS-c in paired baseline and post-treatment sera obtained from HER2-positive breast cancer patients randomized to receive either metformin combined with neoadjuvant chemotherapy and trastuzumab or an equivalent regimen without metformin. We failed to find any significant alteration of circulating MOTS-c -as measured using the commercially available competitive ELISA CEX132Hu- in response to 24 weeks of a neoadjuvant chemotherapy/trastuzumab regimen with or without daily metformin. Changes in circulating MOTS-c levels failed to reach statistical significance when comparing patients achieving pathological complete response (pCR), irrespective of metformin treatment. The inability of metformin to target skeletal muscle, the major tissue for MOTS-c production and secretion, might limit its regulatory effects on circulating MOTS-c. Further studies are needed to definitely elucidate the nature of the interaction between metformin and MOTS-c in cancer and non-cancer patients.


Assuntos
Neoplasias da Mama , Metformina , Feminino , Humanos , Neoplasias da Mama/patologia , Insulina/uso terapêutico , Metformina/farmacologia , Mitocôndrias/metabolismo , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico
12.
Nutrients ; 14(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36079891

RESUMO

Therapy-induced senescence (TIS) is a state of stable proliferative arrest of both normal and neoplastic cells that is triggered by exposure to anticancer treatments. TIS cells acquire a senescence-associated secretory phenotype (SASP), which is pro-inflammatory and actively promotes tumor relapse and adverse side-effects in patients. Here, we hypothesized that TIS cells adapt their scavenging and catabolic ability to overcome the nutritional constraints in their microenvironmental niches. We used a panel of mechanistically-diverse TIS triggers (i.e., bleomycin, doxorubicin, alisertib, and palbociclib) and Biolog Phenotype MicroArrays to identify (among 190 different carbon and nitrogen sources) candidate metabolites that support the survival of TIS cells in limiting nutrient conditions. We provide evidence of distinguishable TIS-associated nutrient consumption profiles involving a core set of shared (e.g., glutamine) and unique (e.g., glucose-1-phosphate, inosine, and uridine) nutritional sources after diverse senescence-inducing interventions. We also observed a trend for an inverse correlation between the intensity of the pro-inflammatory SASP provoked by different TIS agents and diversity of compensatory nutritional niches utilizable by senescent cells. These findings support the detailed exploration of the nutritional niche as a new metabolic dimension to understand and target TIS in cancer.


Assuntos
Senescência Celular , Neoplasias , Doxorrubicina/farmacologia , Humanos , Neoplasias/metabolismo
13.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077379

RESUMO

The third-generation anaplastic lymphoma tyrosine kinase inhibitor (ALK-TKI) lorlatinib has a unique side effect profile that includes hypercholesteremia and hypertriglyceridemia in >80% of lung cancer patients. Here, we tested the hypothesis that lorlatinib might directly promote the accumulation of cholesterol and/or triglycerides in human hepatic cells. We investigated the capacity of the hepatoprotectant silibinin to modify the lipid-modifying activity of lorlatinib. To predict clinically relevant drug−drug interactions if silibinin were used to clinically manage lorlatinib-induced hyperlipidemic effects in hepatic cells, we also explored the capacity of silibinin to interact with and block CYP3A4 activity using in silico computational descriptions and in vitro biochemical assays. A semi-targeted ultrahigh pressure liquid chromatography accurate mass quadrupole time-of-flight mass spectrometry with electrospray ionization (UHPLC-ESI-QTOF-MS/MS)-based lipidomic approach revealed that short-term treatment of hepatic cells with lorlatinib promotes the accumulation of numerous molecular species of cholesteryl esters and triglycerides. Silibinin treatment significantly protected the steady-state lipidome of hepatocytes against the hyperlipidemic actions of lorlatinib. Lipid staining confirmed the ability of lorlatinib to promote neutral lipid overload in hepatocytes upon long-term exposure, which was prevented by co-treatment with silibinin. Computational analyses and cell-free biochemical assays predicted a weak to moderate inhibitory activity of clinically relevant concentrations of silibinin against CYP3A4 when compared with recommended (rosuvastatin) and non-recommended (simvastatin) statins for lorlatinib-associated dyslipidemia. The elevated plasma cholesterol and triglyceride levels in lorlatinib-treated lung cancer patients might involve primary alterations in the hepatic accumulation of lipid intermediates. Silibinin could be clinically explored to reduce the undesirable hyperlipidemic activity of lorlatinib in lung cancer patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Quinase do Linfoma Anaplásico , Carcinoma Pulmonar de Células não Pequenas/patologia , Citocromo P-450 CYP3A , Hepatócitos , Humanos , Lactamas , Lactamas Macrocíclicas/farmacologia , Lipídeos/uso terapêutico , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirazóis , Silibina , Espectrometria de Massas em Tandem , Triglicerídeos/uso terapêutico
14.
J Proteome Res ; 21(11): 2555-2565, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36180971

RESUMO

Advances in metabolomics analysis and data treatment increase the knowledge of complex biological systems. One of the most used methodologies is gas chromatography-mass spectrometry (GC-MS) due to its robustness, high separation efficiency, and reliable peak identification through curated databases. However, methodologies are not standardized, and the derivatization steps in GC-MS can introduce experimental errors and take considerable time, exposing the samples to degradation. Here, we propose the injection-port derivatization (IPD) methodology to increase the throughput in plasma metabolomics analysis by GC-MS. The IPD method was evaluated and optimized for different families of metabolites (organic acids, amino acids, fatty acids, sugars, sugar phosphates, etc.) in terms of residence time, injection-port temperature, and sample/derivatization reagent ratio. Finally, the method's usefulness was validated in a study consisting of a cohort of obese patients with or without nonalcoholic steatohepatitis. Our results show a fast, reproducible, precise, and reliable method for the analysis of biological samples by GC-MS. Raw data are publicly available at MetaboLights with Study Identifier MTBLS5151.


Assuntos
Ácidos , Metabolômica , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica/métodos , Indicadores e Reagentes , Aminoácidos
15.
Int J Mol Sci ; 23(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35887177

RESUMO

The surgically induced remission of liver disease represents a model to investigate the signalling processes that trigger the development of nonalcoholic steatohepatitis with the aim of identifying novel therapeutic targets. We recruited patients with severe obesity with or without nonalcoholic steatohepatitis and obtained liver and plasma samples before and after laparoscopic sleeve gastrectomy for immunoblotting, immunocytochemical, metabolomic, transcriptomic and epigenetic analyses. Functional studies were performed in HepG2 cells and primary hepatocytes. Surgery was associated with a decrease in the inflammatory response and revealed the role of mitogen-activated protein kinases. Nonalcoholic steatohepatitis was associated with an increased glutaminolysis-induced production of α-ketoglutarate and the hyperactivation of mammalian target of rapamycin complex 1. These changes were crucial for adenosine monophosphate-activated protein kinase/mammalian target of rapamycin-driven pathways that modulated hepatocyte survival by coordinating apoptosis and autophagy and affected methylation-related epigenomic remodelling enzymes. Hepatic transcriptome signatures and differentially methylated genomic regions distinguished patients with and without steatohepatitis. Our results suggest that the increased glutaminolysis-induced α-ketoglutarate production and the mammalian target of rapamycin complex 1 dysregulation play a crucial role in the inefficient adaptive responses leading to steatohepatitis in obesity.


Assuntos
Laparoscopia , Hepatopatia Gordurosa não Alcoólica , Obesidade Mórbida , Gastrectomia/métodos , Humanos , Ácidos Cetoglutáricos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade Mórbida/cirurgia , Serina-Treonina Quinases TOR
17.
Am J Cancer Res ; 12(5): 2173-2188, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693067

RESUMO

The HER3/4 ligand heregulin-ß2 (HRG) is a secreted growth factor that transactivates the ligand-less receptor HER2 to promote aggressive phenotypes in breast cancer. HRG can also localize to the nucleus of breast cancer cells, but both the nuclear translocation mechanism and the physiological role of nuclear HRG remain elusive. Here we show that nucleolin-driven nuclear moonlighting of HRG uncouples its role as a driver of endocrine resistance from its canonical HER network-activating role in breast cancer. Tandem affinity purification coupled to mass spectrometry identified the intracellular transporter nucleolin as a major HRG-binding protein. HRG interacts with nucleolin via a nuclear localization signal motif located at the N-terminal extracellular domain of HRG. Nucleolin interacts with HRG via aspartate/glutamate-rich acidic stretches located at the N-terminal domain of nucleolin. Depletion of nucleolin abolishes HRG nuclear translocation and decreases HRG mRNA and protein expression. Isolated deficiency of nuclear HRG abolishes the HRG-driven endocrine resistance phenotype in vitro and in mouse xenograft models, while preserving its capacity to activate the HRG/HER/MAPK autocrine signaling axis. Conversely, isolated deficiency of secreted HRG to bind HER2/3 receptors does not impair endocrine resistance. The discovery that the functions of dual compartment-resident HRG do not depend on the same effector (i.e., activation of HER2/3 receptors) establishes a new paradigm for the functional and therapeutic relevance of nuclear HRG in breast cancer.

18.
Artigo em Inglês | MEDLINE | ID: mdl-35742338

RESUMO

The drill-and-blast method is widely used for the excavation of hard rock tunnels. Toxic gases such as carbon monoxide and nitrogen oxides are released immediately after blasting by the detonation of explosives. To provide a safe working environment, the concentration of noxious gases must be reduced below the threshold limit value according to health and safety regulations. In this paper, one-dimensional mathematical models and three-dimensional CFD numerical simulations were conducted to analyze the concentration, propagation and dilution of the blasting fumes under different operating conditions. Forced, exhaust and mixed ventilation modes were compared to determine the safe re-entry times after blasting in a 200 m-long tunnel excavated using the top-heading-and-benching method. Based on the numerical simulations, carbon monoxide was the most critical gas, as it required a longer ventilation time to reduce its concentration below the threshold limit value. The safe re-entry time reached 480 s under the typical forced ventilation mode, but was reduced to 155 s when a mixed ventilation system was used after blasting, reducing the operating costs. The reduction of the re-entry time represents a significant improvement in the excavation cycle. In addition, the results obtained show that 1D models can be used to preliminary analyze the migration of toxic gases. However, to reliably determine the safe re-entry times, 3D numerical models should be developed. Finally, to verify the accuracy of the CFD results, field measurements were carried out in a railway tunnel using gas sensors. In general, good agreements were obtained between the 3D numerical simulations and the measured values.


Assuntos
Monóxido de Carbono , Gases , Monóxido de Carbono/análise , Explosões , Modelos Teóricos , Emissões de Veículos , Ventilação
19.
Expert Opin Ther Targets ; 26(5): 427-444, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35545806

RESUMO

INTRODUCTION: Brain metastasis (BrM) is a key contributor to morbidity and mortality in breast cancer patients, especially among high-risk epidermal growth factor receptor 2-positive (HER2+) and triple-negative/basal-like molecular subtypes. Optimal management of BrM is focused on characterizing a 'BrM dependency map' to prioritize targetable therapeutic vulnerabilities. AREAS COVERED: We review recent studies addressing the targeting of BrM in the lipid-deprived brain environment, which selects for brain-tropic breast cancer cells capable of cell-autonomously generating fatty acids by upregulating de novo lipogenesis via fatty acid synthase (FASN). Disruption of FASN activity impairs breast cancer growth in the brain, but not extracranially, and mapping of the molecular causes of organ-specific patterns of metastasis has uncovered an enrichment of lipid metabolism signatures in brain metastasizing cells. Targeting SREBP1-the master regulator of lipogenic gene transcription-curtails the ability of breast cancer cells to survive in the brain microenvironment. EXPERT OPINION: Targeting FASN represents a new therapeutic opportunity for patients with breast cancer and BrM. Delivery of brain-permeable FASN inhibitors and identifying strategies to target metabolic plasticity that might compensate for impaired brain FASN activity are two potential roadblocks that may hinder FASN-centered strategies against BrM.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias da Mama/patologia , Ácido Graxo Sintases/metabolismo , Feminino , Humanos , Lipogênese , Microambiente Tumoral
20.
Biomedicines ; 10(5)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35625825

RESUMO

Radiation therapy is an important component of cancer treatment scheduled for cancer patients, although it can cause numerous deleterious effects. The use of adjuvant molecules aims to limit the damage in normal surrounding tissues and enhance the effects of radiation therapy, either killing tumor cells or slowing down their growth. Melatonin, an indoleamine released by the pineal gland, behaves as a radiosensitizer in breast cancer, since it enhances the therapeutic effects of ionizing radiation and mitigates side effects on normal cells. However, the molecular mechanisms through which melatonin modulates the molecular changes triggered by radiotherapy remain mostly unknown. Here, we report that melatonin potentiated the anti-proliferative effect of radiation in MCF-7 cells. Treatment with ionizing radiation induced changes in the expression of many genes. Out of a total of 25 genes altered by radiation, melatonin potentiated changes in 13 of them, whereas the effect was reverted in another 10 cases. Among them, melatonin elevated the levels of PTEN and NME1, and decreased the levels of SNAI2, ERBB2, AKT, SERPINE1, SFN, PLAU, ATM and N3RC1. We also analyzed the expression of several microRNAs and found that melatonin enhanced the effect of radiation on the levels of miR-20a, miR-19a, miR-93, miR-20b and miR-29a. Rather surprisingly, radiation induced miR-17, miR-141 and miR-15a but melatonin treatment prior to radiation counteracted this stimulatory effect. Radiation alone enhanced the expression of the cancer suppressor miR-34a, and melatonin strongly stimulated this effect. Melatonin further enhanced the radiation-mediated inhibition of Akt. Finally, in an in vivo assay, melatonin restrained new vascularization in combination with ionizing radiation. Our results confirm that melatonin blocks many of the undesirable effects of ionizing radiation in MCF-7 cells and enhances changes that lead to optimized treatment results. This article highlights the effectiveness of melatonin as both a radiosensitizer and a radioprotector in breast cancer. Melatonin is an effective adjuvant molecule to radiotherapy, promoting anti-cancer therapeutic effects in cancer treatment. Melatonin modulates molecular pathways altered by radiation, and its use in clinic might lead to improved therapeutic outcomes by enhancing the sensitivity of cancerous cells to radiation and, in general, reversing their resistance toward currently applied therapeutic modalities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA