Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Curr Probl Cancer ; 52: 101129, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232443

RESUMO

Advancements in somatostatin receptor (SSTR) targeted imaging and treatment of well-differentiated neuroendocrine tumors (NETs) have revolutionized the management of these tumors. This comprehensive review delves into the current practice, discussing the use of the various FDA-approved SSTR-agonist PET tracers and the predictive imaging biomarkers, and elaborating on Lu177-DOTATATE peptide receptor radionuclide therapy (PRRT) including the evolving areas of post-therapy imaging practices, PRRT retreatment, and the potential role of dosimetry in optimizing patient treatments. The future directions sections highlight ongoing research on investigational PET imaging radiotracers, future prospects in alpha particle therapy, and combination therapy strategies.


Assuntos
Tumores Neuroendócrinos , Compostos Radiofarmacêuticos , Receptores de Somatostatina , Humanos , Tumores Neuroendócrinos/terapia , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/diagnóstico por imagem , Tumores Neuroendócrinos/radioterapia , Receptores de Somatostatina/metabolismo , Compostos Radiofarmacêuticos/uso terapêutico , Tomografia por Emissão de Pósitrons/métodos , Nanomedicina Teranóstica/métodos , Nanomedicina Teranóstica/tendências , Octreotida/análogos & derivados , Octreotida/uso terapêutico , Compostos Organometálicos/uso terapêutico
2.
Radiographics ; 44(1): e230097, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38060426

RESUMO

Radiopharmaceutical therapies (RPTs) are gaining increased interest with the recent emergence of novel safe and effective theranostic agents, improving outcomes for thousands of patients. The term theranostics refers to the use of diagnostic and therapeutic agents that share the same molecular target; a major step toward precision medicine, especially for oncologic applications. The authors dissect the fundamentals of theranostics in nuclear medicine. First, they explain the radioactive decay schemes and the characteristics of emitted electromagnetic radiation used for imaging, as well as particles used for therapeutic purposes, followed by the interaction of the different types of radiation with tissue. These concepts directly apply to clinical RPTs and play a major role in the efficacy and toxicity profile of different radiopharmaceutical agents. Personalized dosimetry is a powerful tool that can help estimate patient-specific absorbed doses, in tumors as well as normal organs. Dosimetry in RPT is an area of active investigation, as most of what we know about the relationship between delivered dose and tissue damage is extrapolated from external-beam radiation therapy; more research is needed to understand this relationship as it pertains to RPTs. Tumor heterogeneity is increasingly recognized as an important prognostic factor. Novel molecular imaging agents, often in combination with fluorine 18-fluorodeoxyglucose, are crucial for assessment of target expression in the tumor and potential hypermetabolic disease that may lack the molecular target expression. ©RSNA, 2023 Test Your Knowledge questions are available in the supplemental material.


Assuntos
Neoplasias , Médicos , Humanos , Medicina de Precisão/métodos , Compostos Radiofarmacêuticos/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Imagem Molecular
3.
Biomed Res Int ; 2018: 5120974, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30363655

RESUMO

OBJECTIVE: To compare organ specific radiation dose and image quality in kidney stone patients scanned with standard CT reconstructed with filtered back projection (FBP-CT) to those scanned with low dose CT reconstructed with iterative techniques (IR-CT). MATERIALS AND METHODS: Over a one-year study period, adult kidney stone patients were retrospectively netted to capture the use of noncontrasted, stone protocol CT in one of six institutional scanners (four FBP and two IR). To limit potential CT-unit use bias, scans were included only from days when all six scanners were functioning. Organ dose was calculated using volumetric CT dose index and patient effective body diameter through validated conversion equations derived from previous cadaveric, dosimetry studies. Board-certified radiologists, blinded to CT algorithm type, assessed stone characteristics, study noise, and image quality of both techniques. RESULTS: FBP-CT (n=250) and IR-CT (n=90) groups were similar in regard to gender, race, body mass index (mean BMI = 30.3), and stone burden detected (mean size 5.4 ± 1.2 mm). Mean organ-specific dose (OSD) was 54-62% lower across all organs for IR-CT compared to FBP-CT with particularly reduced doses (up to 4.6-fold) noted in patients with normal BMI range. No differences were noted in radiological assessment of image quality or noise between the cohorts, and intrarater agreement was highly correlated for noise (AC2=0.873) and quality (AC2=0.874) between blinded radiologists. CONCLUSIONS: Image quality and stone burden assessment were maintained between standard FBP and low dose IR groups, but IR-CT decreased mean OSD by 50%. Both urologists and radiologists should advocate for low dose CT, utilizing reconstructive protocols like IR, to reduce radiation exposure in their stone formers who undergo multiple CTs.


Assuntos
Cálculos Renais/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Doses de Radiação , Radiometria/métodos , Estudos Retrospectivos , Adulto Jovem
4.
J Urol ; 195(4 Pt 1): 992-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26527512

RESUMO

PURPOSE: Proper fluoroscopic education and protocols may reduce the patient radiation dose but few prospective studies in urology have been performed. Using optically stimulated luminescent dosimeters we tested whether fluoroscopy time and/or entrance skin dose would decrease after educational and radiation reduction protocols. MATERIALS AND METHODS: At default manufacturer settings fluoroscopy time and entrance skin dose were prospectively measured using optically stimulated luminescent dosimeters in patients undergoing ureteroscopy, retrograde pyelogram/stent or percutaneous nephrolithotomy with access for stone disease. A validated radiation safety competency test was administered to urology faculty and residents before and after web based, hands-on fluoroscopy training. Default fluoroscopy settings were changed from continuous to intermittent pulse rate and from standard to half-dose output. Fluoroscopy time and entrance skin dose were then measured again. RESULTS: The cohorts of 44 pre-protocol and 50 post-protocol patients with stones were similarly matched. The change in mean fluoroscopy time and entrance skin dose from pre-protocol to post-protocol was -0.6 minutes and -11.6 mGy (33%) for percutaneous nephrolithotomy (p = 0.62 and <0.001), 0.5 minutes and -0.1 mGy (34%) for ureteroscopy (p = 0.42 and 0.31), and 0.1 minute and -0.1 mGy (29%) for retrograde pyelogram/stent (p = 0.85 and 0.49, respectively). Urologist post-training test scores increased 30% from pretraining scores (p = 0.1). CONCLUSIONS: Radiation safety training protocols improved clinical knowledge but did not significantly alter fluoroscopy time. Changing equipment default settings to intermittent pulse rate (12 frames per second) and half-dose lowered the entrance skin dose by 30% across all endourology patients but most significantly during percutaneous nephrolithotomy. To limit patient radiation exposure fluoroscopy default settings should be decreased before all endourology procedures and image equipment manufacturers should consider lowering standard default renal settings.


Assuntos
Cálculos Renais/terapia , Nefrostomia Percutânea/métodos , Doses de Radiação , Pele/efeitos da radiação , Ureteroscopia/métodos , Adulto , Protocolos Clínicos , Feminino , Fluoroscopia/instrumentação , Fluoroscopia/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
5.
Radiology ; 277(2): 463-70, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26043262

RESUMO

PURPOSE: To develop a methodology that allows direct measurement of organ doses from computed tomographic (CT) examinations of postmortem subjects. MATERIALS AND METHODS: In this institutional review board approved study, the x-ray linear attenuation coefficients of various tissues were calculated from the mean CT numbers of images that were obtained in eight embalmed adult female cadavers and compared with the corresponding linear attenuation coefficients calculated from CT images obtained in eight living patients that were body mass index (BMI)-matched. Dosimetry was performed in three of the cadavers by accessing organs of interest and affixing partially sealed vinyl tubes inside them. Optically stimulated luminescent dosimeters (OSLDs) were inserted into the tubes and positioned within the organs of interest and on the skin. OSLDs were read with an InLight MicroStar (Landauer, Glenwood, Ill) reader, and readings were corrected for energy and scatter response. Fifteen tubes containing dosimeters were used, and imaging was repeated twice in each cadaver, for a total of five standard clinical protocols. Average dosimetry values were used for analysis. RESULTS: Differences in linear attenuation coefficients between living and embalmed cadaveric tissues were within 3% for the tissues investigated. Measured organ doses for a chest-abdomen-pelvis CT protocol were less than 32 mGy for all organs measured. Organs that were completely irradiated during a given examination received similar doses, whereas organs that were partially irradiated displayed a large variation in measured organ dose. CONCLUSION: The anatomic and radiation attenuation characteristics of cadavers are comparable to those of living human tissue. This methodology allows direct measurement of organ doses from clinical CT examinations.


Assuntos
Doses de Radiação , Exposição à Radiação/análise , Radiometria/métodos , Tomografia Computadorizada por Raios X , Cadáver , Feminino , Humanos , Especificidade de Órgãos
6.
Radiology ; 277(2): 471-6, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26110666

RESUMO

PURPOSE: To generate empirical sets of equations that can be used to calculate patient-specific organ doses resulting from a group of computed tomographic (CT) studies by using data from direct dose measurements performed within a human body. MATERIALS AND METHODS: Organ dose measurements were obtained in eight postmortem female subjects. A chest-abdomen-pelvis protocol was used for this study. The relationships among measured organ doses, body mass index, effective diameter (D(eff)), and volume CT dose index (CTDI(vol)) were investigated. Organ dose equations were developed by means of linear regression from organ dose data, with CTDI(vol) and D(eff) as variables, by using Pearson correlation coefficients and P values to determine correlation strength of fit. Measured organ doses were compared with corresponding size-specific dose estimates (SSDEs). RESULTS: The central-section D(eff) presented similar correlations with organ doses to those from D(eff) measured at specific organ locations. The strongest correlations were observed between the central-section D(eff) and CTDI(vol)-normalized organ doses (R(2): 0.478-0.941). The average of measured organ doses for each subject resulted in an average difference of only 5% from SSDE-calculated doses; however, individual organ doses differed from +31% to -61% from the calculated SSDE. CONCLUSION: The organ dose equations developed represent a method for organ dose estimation from direct organ dose measurements that can estimate organ doses more accurately than the calculated SSDE, which provides a less-specific patient dose estimate.


Assuntos
Doses de Radiação , Exposição à Radiação/análise , Radiometria/métodos , Tomografia Computadorizada por Raios X , Algoritmos , Tamanho Corporal , Cadáver , Feminino , Humanos , Especificidade de Órgãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA