Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Radiology ; 291(1): 15-20, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30747591

RESUMO

Background Previous studies have suggested that breast parenchymal texture features may reflect the biologic risk factors associated with breast cancer development. Therefore, combining the characteristics of normal parenchyma from the contralateral breast with radiomic features of breast tumors may improve the accuracy of digital mammography in the diagnosis of breast cancer. Purpose To determine whether the addition of radiomic analysis of contralateral breast parenchyma to the characterization of breast lesions with digital mammography improves lesion classification over that with radiomic tumor features alone. Materials and Methods This HIPAA-compliant, retrospective study included 182 patients (age range, 25-90 years; mean age, 55.9 years ± 14.9) who underwent mammography between June 2002 and July 2009. There were 106 malignant and 76 benign lesions. Automatic lesion segmentation and radiomic analysis were performed for each breast lesion. Radiomic texture analysis was applied in the normal regions of interest in the contralateral breast parenchyma to assess the mammographic parenchymal patterns. The classification performance of both individual features and the output from a Bayesian artificial neural network classifier was evaluated with the leave-one-patient-out method by using the area under the receiver operating characteristic curve (AUC) as the figure of merit in the task of differentiating between malignant and benign lesions. Results The performance of the combined lesion and parenchyma classifier in the differentiation between malignant and benign mammographic lesions was better than that with the lesion features alone (AUC = 0.84 ± 0.03 vs 0.79 ± 0.03, respectively; P = .047). Overall, six radiomic features-spiculation, margin sharpness, size, circularity from the tumor feature set, and skewness and power law beta from the parenchymal feature set-were selected more than 50% of the time during the feature selection process on the combined feature set. Conclusion Combining quantitative radiomic data from tumors with contralateral parenchyma characterizations may improve diagnostic accuracy for breast cancer. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Shaffer in this issue.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mamografia/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Densidade da Mama/fisiologia , Neoplasias da Mama/patologia , Feminino , Humanos , Pessoa de Meia-Idade , Tecido Parenquimatoso/diagnóstico por imagem , Tecido Parenquimatoso/patologia , Curva ROC , Estudos Retrospectivos , Carga Tumoral
2.
J Med Imaging (Bellingham) ; 5(1): 011002, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28948196

RESUMO

The robustness of radiomic texture analysis across different manufacturers of mammography imaging systems is investigated. We quantified feature robustness across mammography manufacturers using a dataset of 111 women who underwent consecutive screening mammography on both general electric and Hologic systems. In each mammogram, a square region of interest (ROI) directly behind the nipple was manually selected. Radiomic features describing parenchymal patterns were automatically extracted on each ROI. Feature comparisons were conducted between manufacturers (and breast densities) using newly developed robustness metrics descriptive of correlation, equivalence, and variability. By examining the distribution of these metric values, we propose the following selection criteria to guide feature evaluation in this dataset: (1) [Formula: see text] of feature ratios [Formula: see text], (2) standard deviation of feature ratios [Formula: see text], (3) correlation of features [Formula: see text], and (4) [Formula: see text]. Statistically significant correlation coefficients ranged from 0.13 to 0.68 in comparisons between the two mammographic systems tested. Features describing spatial patterns tended to exhibit high correlation coefficients, while intensity- and directionality-based features had comparatively poor correlation. Our proposed robustness metrics may be used to evaluate other datasets, for which different ranges of metric values may be appropriate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA