Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
2.
Int J Pharm ; 640: 123011, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37146952

RESUMO

Melanoma is the most aggressive form of skin cancer, with increasing incidence and mortality rates. To overcome current treatment limitations, a hybrid molecule (HM) combining a triazene and a sulfur L-tyrosine analogue, was recently synthesized, incorporated in long blood circulating liposomes (LIP HM) and validated in an immunocompetent melanoma model. The present work constitutes a step forward in the therapeutic assessment of HM formulations. Here, human melanoma cells, A375 and MNT-1, were used and dacarbazine (DTIC), a triazene drug clinically available as first-line treatment for melanoma, constituted the positive control. In cell cycle analysis, A375 cells, after 24-h incubation with HM (60 µM) and DTIC (70 µM), resulted in a 1.2 fold increase (related to control) in the percentage of cells in G0/G1 phase. The therapeutic activity was evaluated in a human murine melanoma model (subcutaneously injected with A375 cells) to most closely resemble the human pathology. Animals treated with LIP HM exhibited the highest antimelanoma effect resulting in a 6-, 5- and 4-fold reduction on tumor volume compared to negative control, Free HM and DTIC groups, respectively. No toxic side effects were detected. Overall, these results constitute another step forward in the validation of the antimelanoma activity of LIP HM, using a murine model that more accurately simulates the pathology that occurs in human patients.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Animais , Camundongos , Nanomedicina , Melanoma/metabolismo , Dacarbazina , Neoplasias Cutâneas/patologia , Linhagem Celular Tumoral , Apoptose
3.
Biomedicines ; 11(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36979947

RESUMO

Cancer is a societal burden demanding innovative approaches. A major problem with the conventional chemotherapeutic agents is their strong toxicity and other side effects due to their poor selectivity. Uncontrolled proliferation of cancer cells is due to mutations, deletions, or amplifications in genes (oncogenes) encoding for proteins that regulate cell growth and division, such as transcription factors, for example, c-MYC. The direct targeting of the c-MYC protein has been attempted but so far unsuccessfully, as it lacks a definite binding site for the modulators. Meanwhile, another approach has been explored since the discovery that G-quadruplex secondary DNA structures formed in the guanine-rich sequences of the c-MYC promoter region can downregulate the transcription of this oncogene. Here, we will overview the major achievements made in the last decades towards the discovery of a new class of anticancer drugs targeting G-quadruplexes in the c-MYC promoter of cancer cells.

4.
Biomed Pharmacother ; 157: 114021, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36399831

RESUMO

The aggressiveness of melanoma and lack of effective therapies incite the discovery of novel strategies. Recently, a new dual acting hybrid molecule (HM), combining a triazene and a ʟ-tyrosine analogue, was synthesized. HM was designed to specifically be activated by tyrosinase, the enzyme involved in melanin biosynthesis and overexpressed in melanoma. HM displayed remarkable superior antiproliferative activity towards various cancer cell lines compared with temozolomide (TMZ), a triazene drug in clinical use, that acts through DNA alkylation. In B16-F10 cells, HM induced a cell cycle arrest at phase G0/G1 with a 2.8-fold decrease in cell proliferation index. Also, compared to control cells, HM led to a concentration-dependent reduction in tyrosinase activity and increase in caspase 3/7 activity. To maximize the therapeutic performance of HM in vivo, its incorporation in long blood circulating liposomes, containing poly(ethylene glycol) (PEG) at their surface, was performed for passively targeting tumour sites. HM liposomes (LIP HM) exhibited high stability in biological fluids. Preclinical studies demonstrated its safety for systemic administration and in a subcutaneous murine melanoma model, significantly reduced tumour progression. In a metastatic murine melanoma model, a superior antitumour effect was also observed for mice receiving LIP HM, with markedly reduction of lung metastases compared to positive control group (TMZ). Biodistribution studies using 111In-labelled LIP HM demonstrated its ability for passively targeting tumour sites, thus correlating with the high therapeutic effect observed in the two experimental murine melanoma models. Overall, our proposed nanotherapeutic strategy was validated as an effective and safe alternative against melanoma.


Assuntos
Lipossomos , Melanoma Experimental , Camundongos , Animais , Lipossomos/farmacologia , Distribuição Tecidual , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Temozolomida , Proliferação de Células , Linhagem Celular Tumoral
5.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38203318

RESUMO

Euphorbia species are important sources of polycyclic and macrocyclic diterpenes, which have been the focus of natural-product-based drug research due to their relevant biological properties, including anticancer, multidrug resistance reversal, antiviral, and anti-inflammatory activities. Premyrsinane, cyclomyrsinane, and myrsinane diterpenes are generally and collectively designated as myrsinane-type diterpenes. These compounds are derived from the macrocyclic lathyrane structure and are characterized by having highly oxygenated rearranged polycyclic systems. This review aims to describe and summarize the distribution and diversity of 220 myrsinane-type diterpenes isolated in the last four decades from about 20 Euphorbia species. Some myrsinane diterpenes obtained from Jatropha curcas are also described. Discussion on their plausible biosynthetic pathways is presented, as well as isolation procedures and structural elucidation using nuclear magnetic resonance spectroscopy. Furthermore, the most important biological activities are highlighted, which include cytotoxic and immunomodulatory activities, the modulation of efflux pumps, the neuroprotective effects, and the inhibition of enzymes such as urease, HIV-1 reverse transcriptase, and prolyl endopeptidase, among other biological effects.


Assuntos
Diterpenos , Euphorbia , Jatropha , Diterpenos/farmacologia , Imunomodulação , Prolil Oligopeptidases
6.
Antioxidants (Basel) ; 11(11)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36421477

RESUMO

Selenium (Se) is a micronutrient with essential physiological functions achieved through the production of selenoproteins. Adequate Se intake has health benefits and reduces mercury (Hg) toxicity, which is important due to its neurotoxicity. This study determined the Se status and redox enzyme, including selenoproteins', activity in pregnant women highly exposed to Hg (between 1 to 54 µg Hg/L blood) via fish consumption. A cross-sectional study enrolling 513 women between the first and third trimester of pregnancy from Madeira, Portugal was conducted, encompassing collection of blood and plasma samples. Samples were analyzed for total Se and Hg levels in whole blood and plasma, and plasma activity of redox-active proteins, such as glutathione peroxidase (GPx), thioredoxin reductase (TrxR) and thioredoxin (Trx). Enzyme activities were related to Se and Hg levels in blood. Se levels in whole blood (65.0 ± 13.1 µg/L) indicated this population had a sub-optimal Se status, which translated to low plasma GPx activity (69.7 ± 28.4 U/L). The activity of TrxR (12.3 ± 5.60 ng/mL) was not affected by the low Se levels. On the other hand, the decrease in Trx activity with an increase in Hg might be a good indicator to prevent fetal susceptibility.

7.
Bioorg Med Chem Lett ; 72: 128862, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35716866

RESUMO

Indoloquinolines are natural alkaloids with known affinity to DNA and antiproliferative activity against bacteria, parasites, and cancer cells. Due to their non-chiral skeleton, their total synthesis is easy to achieve and throughout the years, many derivatives have been studied for their potential as drugs. Herein we review the indoloquinolines and bioisosters that have been designed, synthesised, and evaluated for their selective binding to G-quadruplex nucleic acid structures, as well as the reported effects in cancer cells. The data collected so far strongly suggest that indoloquinolines are good scaffolds for the development of drugs and probes targeting the G-quadruplex structures, but they also show that this scaffold is still underexplored.


Assuntos
Alcaloides , Quadruplex G , Alcaloides/química , Alcaloides/farmacologia , DNA/química , Ligantes
8.
Pharmaceuticals (Basel) ; 15(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35337098

RESUMO

Organic small molecules that can recognize and bind to G-quadruplex and i-Motif nucleic acids have great potential as selective drugs or as tools in drug target discovery programs, or even in the development of nanodevices for medical diagnosis. Hundreds of quadruplex-interactive small molecules have been reported, and the challenges in their design vary with the intended application. Herein, we survey the major achievements on the therapeutic potential of such quadruplex ligands, their mode of binding, effects upon interaction with quadruplexes, and consider the opportunities and challenges for their exploitation in drug discovery.

9.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35337138

RESUMO

Human African trypanosomiasis (sleeping sickness) and American trypanosomiasis (Chagas disease) are vector-borne neglected tropical diseases, caused by the protozoan parasites Trypanosoma brucei and Trypanosoma cruzi, respectively. These diseases were circumscribed to South American and African countries in the past. However, human migration, military interventions, and climate changes have had an important effect on their worldwide propagation, particularly Chagas disease. Currently, the treatment of trypanosomiasis is not ideal, becoming a challenge in poor populations with limited resources. Exploring natural products from higher plants remains a valuable approach to find new hits and enlarge the pipeline of new drugs against protozoal human infections. This review covers the recent studies (2016-2021) on plant terpenoids, and their semi-synthetic derivatives, which have shown promising in vitro and in vivo activities against Trypanosoma parasites.

11.
ACS Med Chem Lett ; 12(11): 1669-1677, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34795855

RESUMO

Malignant melanoma is the major cause of death from skin cancer. Treatment of metastatic melanoma remains an enormous challenge. In this study we developed hybrid compounds and studied their potential use in malignant melanoma chemotherapy. They were designed to act by a double mechanism of action, being composed of two pharmacophores: the tyrosine sulfur analogue 4-S-cysteaminylphenol (4-S-CAP, 10), with immunomodulatory properties and specific melanocytotoxic activity, and triazene 4, with DNA alkylating properties. The design of these compounds aims to achieve selective activation by the enzyme tyrosinase overexpressed in melanoma cells. Compounds 11a-e, 13a, and 13b were found to be excellent tyrosinase substrates (0.5 min ≤ t 1/2 ≤ 3.7 min). Furthermore, derivatives 11 and 13 were evaluated for their molecular properties, hepatotoxicity, in vivo toxicity profile, and assessment of cytotoxic activity in melanoma and non-melanoma cell lines. The results were compared with those obtained for temozolomide, a triazene used in melanoma therapy. It was discovered that the hybrids are selective and effective drugs, representing a valuable model for the development of new multitarget melanoma therapy. In particular, compound 10 may be an important component for these strategies that use a metabolic pathway of melanin synthesis. Molecular hybridization of 10 with triazenes 4 renders the hybrids (11 and 13) unexpectedly devoid of hepatotoxicity while maintaining cytotoxic activity in malignant cells.

12.
Pharmaceuticals (Basel) ; 14(7)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34358095

RESUMO

G-quadruplex (G4)-interactive small molecules have a wide range of potential applications, not only as drugs, but also as sensors of quadruplex structures. The purpose of this work is the synthesis of analogues of the bis-methylquinolinium-pyridine-2,6-dicarboxamide G4 ligand 360A, to identify relevant structure-activity relationships to apply to the design of other G4-interactive small molecules bearing bis-quinoline or bis-isoquinoline moieties. Thermal denaturation experiments revealed that non-methylated derivatives with a relative 1,4 position between the amide linker and the nitrogen of the quinoline ring are moderate G4 stabilizers, with a preference for the hybrid h-Telo G4, a 21-nt sequence present in human telomeres. Insertion of a positive charge upon methylation of quinoline/isoquinoline nitrogen increases compounds' ability to selectively stabilize G4s compared to duplex DNA, with a preference for parallel structures. Among these, compounds having a relative 1,3-position between the charged methylquinolinium/isoquinolinium nitrogen and the amide linker are the best G4 stabilizers. More interestingly, these ligands showed different capacities to selectively block DNA polymerization in a PCR-stop assay and to induce G4 conformation switches of hybrid h-Telo G4. Molecular dynamic simulations with the parallel G4 formed by a 21-nt sequence present in k-RAS gene promoter, showed that the relative spatial orientation of the two methylated quinoline/isoquinoline rings determines the ligands mode and strength of binding to G4s.

13.
Foods ; 10(2)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671755

RESUMO

Nowadays, food adulteration and authentication are topics of utmost importance for consumers, food producers, business operators and regulatory agencies. Therefore, there is an increasing search for rapid, robust and accurate analytical techniques to determine the authenticity and to detect adulteration and misrepresentation. Mid-infrared spectroscopy (MIR), often associated with chemometric techniques, offers a fast and accurate method to detect and predict food adulteration based on the fingerprint characteristics of the food matrix. In the first part of this review the basic concepts of infrared spectroscopy, sampling techniques, as well as an overview of chemometric tools are summarized. In the second part, recent applications of MIR spectroscopy to the analysis of foods such as coffee, dairy products, honey, olive oil and wine are discussed, covering a timespan from 2010 to mid-2020. The literature gathered in this article clearly reveals that the MIR spectroscopy associated with attenuated total reflection acquisition mode and different chemometric tools have been broadly applied to address quality, authenticity and adulteration issues. This technique has the advantages of being simple, fast and easy to use, non-destructive, environmentally friendly and, in the future, it can be applied in routine analyses and official food control.

14.
ACS Omega ; 5(42): 27332-27343, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33134696

RESUMO

A highly stereoselective, one-pot, multicomponent method has been developed to synthesize pyrrolizidine- and N-methyl pyrrolidine-substituted spirooxindole derivatives. The [3 + 2] cycloaddition reaction involves the reaction between the dipole azomethine ylides, generated in situ from the reaction between isatin and secondary amino acids such as L-proline or sarcosine, and α,ß-unsaturated carbonyl compounds as the dipolarophile. The reaction condition was optimized to achieve excellent regio- and stereoselectivity. Products were obtained in good yield using ethanol as a solvent at the reflux temperature. The newly synthesized spirooxindole derivatives were evaluated for their antiproliferative efficacy against National Cancer Institute (NCI)-60 cancer cell lines and DNA G-quadruplex (G4) interaction capacity. Compound 14b produced selective cytotoxicity against leukemia, renal, colon, and prostate cancer cell lines at a 10 µM concentration. The G4 interaction studies further suggested that these spirooxindole derivatives were devoid of any activity as DNA G4 ligands.

15.
Cancers (Basel) ; 12(2)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32075099

RESUMO

DNA methyltransferases (DNMTs) play a relevant role in epigenetic control of cancer cell survival and proliferation. Since only two DNMT inhibitors (azacitidine and decitabine) have been approved to date for the treatment of hematological malignancies, the development of novel potent and specific inhibitors is urgent. Here we describe the design, synthesis, and biological evaluation of a new series of compounds acting at the same time as DNMTs (mainly DNMT3A) inhibitors and degraders. Tested against leukemic and solid cancer cell lines, 2a-c and 4a-c (the last only for leukemias) displayed up to submicromolar antiproliferative activities. In HCT116 cells, such compounds induced EGFP gene expression in a promoter demethylation assay, confirming their demethylating activity in cells. In the same cell line, 2b and 4c chosen as representative samples induced DNMT1 and -3A protein degradation, suggesting for these compounds a double mechanism of DNMT3A inhibition and DNMT protein degradation.

16.
Drug Dev Res ; 81(2): 215-231, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31471933

RESUMO

Based on the monoamine oxidase (MAO) inhibition properties of aminoheterocycles with a carbonitrile group we have carried out a systematic exploration to discover new classes of carbonitriles endowed with dual MAO and AChE inhibitory activities, and Aß anti-aggregating properties. Eighty-three nitrile-containing compounds, 13 of which are new, were synthesized and evaluated. in vitro screening revealed that 31, a new compound, presented the best lead for trifunctional inhibition against MAO A (0.34 µM), MAO B (0.26 µM), and AChE (52 µM), while 32 exhibited a lead for selective MAO A (0.12 µM) inhibition coupled to AChE (48 µM) inhibition. Computational analysis revealed that the malononitrile group can find an advantageous position with the aromatic cleft and FAD of MAO A or MAO B. However, the total binding energy can be handicapped by an internal penalty caused by twisting of the ligand molecule and subsequent disruption of the conjugation (32 in MAO B compared to the conjugated 31). Conjugation is also important for AChE as well as the hydrophilic character of malononitrile that allows this group to be in close contact with the aqueous environment as seen for 83. Although the effect of 31 and 32 against Aß1-42 , was very weak, the effect of 63 and 65, and of the new compound 75, indicated that these compounds were able to disaggregate Aß1-42 fibrils. The most effective was 63, a (phenylhydrazinylidene)propanedinitrile derivative that also inhibited MAO A (1.65 µM), making it a potential lead for Alzheimer's disease application.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/efeitos dos fármacos , Nitrilas/síntese química , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Biologia Computacional/métodos , Simulação por Computador , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/farmacologia , Nitrilas/química , Nitrilas/farmacologia , Relação Estrutura-Atividade
17.
Curr Pharm Des ; 25(14): 1623-1642, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244412

RESUMO

Triazenes are a very useful and diverse class of compounds that have been studied for their potential in the treatment of many tumors including brain tumor, leukemia and melanoma. Novel compounds of this class continue to be developed as either anticancer compounds or even with other therapeutic applications. This review focused on several types of triazenes from the simplest ones like 1,3-dialkyl-3-acyltriazenes to the more complex ones like combi-triazenes with an emphasis on how triazenes have been developed as effective antitumor agents.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Triazenos/farmacologia , Humanos
18.
ChemMedChem ; 14(14): 1325-1328, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31162877

RESUMO

Quadruplex nucleic acids are promising targets for cancer therapy. In this study we used a fragment-based approach to create new flexible G-quadruplex (G4) DNA-interactive small molecules with good calculated oral drug-like properties, based on quinoline and triazole heterocycles. G4 melting temperature and polymerase chain reaction (PCR)-stop assays showed that two of these compounds are selective G4 ligands, as they were able to induce and stabilize G4s in a dose- and DNA sequence-dependent manner. Molecular docking studies have suggested plausible quadruplex binding to both the G-quartet and groove, with the quinoline module playing the major role. Compounds were screened for cytotoxicity against four cancer cell lines, where 4,4'-(4,4'-(1,3-phenylene)bis(1H-1,2,3-triazole-4,1-diyl))bis(1-methylquinolin-1-ium) (1 d) showed the greater activity. Importantly, dose-response curves show that 1 d is cytotoxic in the human colon cancer HT-29 cell line enriched in cancer stem-like cells, a subpopulation of cells implicated in chemoresistance. Overall, this study identified a new small molecule as a promising lead for the development of drugs targeting G4 in cancer stem cells.


Assuntos
Antineoplásicos/farmacologia , DNA/metabolismo , Quadruplex G/efeitos dos fármacos , Quinolinas/farmacologia , Triazóis/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , DNA/genética , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Simulação de Acoplamento Molecular , Quinolinas/síntese química , Quinolinas/metabolismo , Triazóis/síntese química , Triazóis/metabolismo
19.
J Prosthet Dent ; 121(6): 966.e1-966.e6, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31078286

RESUMO

STATEMENT OF PROBLEM: Soaking dentures in vinegar or hydrogen peroxide does not seem to remove the microorganisms involved with prosthetic stomatitis efficiently. A mixture of these 2 substances may be effective, but studies are lacking. PURPOSE: The purpose of this in vitro study was to evaluate the antimicrobial effect and cytotoxic activity of vinegar-hydrogen peroxide mixtures against Candida albicans and Staphylococcus aureus. MATERIAL AND METHODS: For antimicrobial tests, planktonic cells and biofilms of C. albicans and S. aureus cultured on acrylic resin disks were exposed to 0.5% sodium hypochlorite; 0.2% peracetic acid; vinegar-hydrogen peroxide mixtures at concentration ratios 1:1, 1:3, and 3:1; vinegar-water mixtures at concentration ratios 1:1, 1:3, and 3:1; and hydrogen peroxide-water mixtures at concentration ratios 1:1, 1:3, and 3:1. Antimicrobial activity was evaluated by counting viable colony-forming units after disinfection. For cytotoxicity tests, the 1:1 vinegar-hydrogen peroxide mixture was serially diluted (10-1 to 10-4) and allowed to be in direct contact with HaCaT keratinocytes for 24 hours. Cytotoxicity was quantitatively and qualitatively determined by counting the number of viable cells and analyzing morphological cell changes. RESULTS: All vinegar-hydrogen peroxide mixtures, sodium hypochlorite, and peracetic acid efficiently eliminated C. albicans and S. aureus (P<.05), whereas vinegar and hydrogen peroxide solutions used separately were not as efficient as the experimental mixtures. The 10-3 and 10-4 dilutions of vinegar-hydrogen peroxide solutions were considered noncytotoxic, whereas dilutions below 10-2 were strongly cytotoxic, comparable with the 10-2 dilution of 0.2% peracetic acid. CONCLUSIONS: The vinegar-hydrogen peroxide mixture effectively eliminated C. albicans and S. aureus from acrylic resin. Dilutions equal or below 10-2 of this mixture presented strong cytotoxic effects.


Assuntos
Anti-Infecciosos , Desinfecção , Ácido Acético , Biofilmes , Candida albicans , Dentaduras , Peróxido de Hidrogênio , Staphylococcus aureus
20.
Bioorg Med Chem ; 25(15): 3900-3910, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28602669

RESUMO

Metastatic melanoma still remains one the most difficult cancers to overcome. The aim of our research was the design of anti-tumour triazene compounds 3 for application to a melanoma-specific therapy. The strategy exploits the unique enzyme pathway of melanin biosynthesis for conversion of non-toxic prodrugs into toxic drugs in the melanoma cell. The compounds 3 were designed by coupling two active moieties, the alkylating triazenes and different tyrosinase substrates. All compounds 3 revealed to be chemically stable in isotonic phosphate buffer (PBS) at physiologic pH (t½≥48h), and most of them showed to be slowly hydrolysed in human plasma (1.5≤t½ (h)≤161). Compounds 3c-n revealed to be excellent tyrosinase substrates (0.74≤t½ (min)≤6) with the best tyrosinase substrate 3l releasing MMT 45s after tyrosinase activation. Structure-activity relationship studies allowed the identification of the better structural features for enzyme affinity. Furthermore, the derivatives 3l and 3m showed cell selectivity with significant cytotoxic effects (IC50 values of 46-65µM) against melanoma cell lines with tyrosinase overexpression MNT-1 and B16F10.


Assuntos
Antineoplásicos/farmacologia , Melanoma/patologia , Triazenos/farmacologia , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Dimerização , Ensaios de Seleção de Medicamentos Antitumorais , Meia-Vida , Humanos , Camundongos , Triazenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA