Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioresour Technol ; 376: 128850, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36898562

RESUMO

Aerobic granular sludge (AGS) systems have great potential for biopolymers recovery, especially when subjected to adverse conditions. This work aimed to study the production of alginate-like exopolymers (ALE) and tryptophan (TRY) under osmotic pressure in conventional and staggered feeding regimes. The results revealed that systems operated with conventional feed accelerated the granulation, although less resistant to saline pressures. The staggered feeding systems favored better denitrification conditions and long-term stability. Salt addition gradient increase influenced biopolymers' production. However, staggered feeding, despite decreasing the famine period, did not influence the production of resources and extracellular polymeric substances (EPS). Sludge retention time (SRT), which was not controlled, proved to be an important operational parameter with negative influences on biopolymers' production in values greater than 20 days. Thus, the principal component analysis confirmed that the production of ALE at low SRT is related to better-formed granules with good sedimentation characteristics and good AGS performances.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Pressão Osmótica , Reatores Biológicos , Aerobiose , Alginatos , Biopolímeros
2.
Chemosphere ; 311(Pt 1): 137006, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36330972

RESUMO

The influence of salt addition to stimulating biopolymers production in aerobic granular sludge (AGS) systems was evaluated. The control systems (R1: acetate and R2: propionate) initially obtained less accumulation of mixed liquor volatile suspended solids (MLVSS), indicating that the osmotic pressure in the salt-supplemented systems (R3: acetate and R4: propionate) contributed to biomass growth. However, the salt-supplemented systems collapsed between days 110 and 130 of operation. R3 and R4 showed better performance regarding nutrients removal due to the greater abundance of nitrifying and denitrifying bacteria and phosphate-accumulating organisms. Salt also contributed to the higher production of biopolymers such as alginate-like exopolymers (ALE) per gram of volatile suspended solids (VSS) (R1: 397 mgALE∙gVSS-1, R2: 140 mgALE∙gVSS-1, R3: 483 mgALE∙gVSS-1, R4: 311 mgALE∙gVSS-1). Amino acids like tyrosine and tryptophan were better identified in extracellular polymeric substances extract from salt-operated reactors. This study brings important results in the context of resource recovery by treating saline effluents.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos/microbiologia , Propionatos , Biopolímeros , Cloreto de Sódio , Aerobiose
3.
Bioresour Technol ; 357: 127355, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35609753

RESUMO

This study evaluated the influence of carbon sources on alginate-like exopolymers (ALE) and tryptophan (Trp) biosynthesis in the aerobic granular sludge (AGS). With acetate, the highest biopolymers levels, per gram of volatile suspended solids (VSS) (418.7 mgALE∙g-1 and 4.1 mgTrp∙gVSS-1), were found likely due to biomass loss throughout the operation, which resulted in lower sludge age (4-7 days) and shorter famine period. During granulation, encouraging results on ALE production were obtained with propionate (>250 mgALE∙gVSS-1), significantly higher than those found with glycerol, glucose, and sucrose. Regarding tryptophan production, propionate and glycerol proved to be good substrates, although the content was still lower than acetate (1.6 mgTrp∙gVSS-1). Granules fed with glucose showed the worst results compared to the other substrates (38.5 mgALE∙VSS-1 and 0.6 mgTrp∙gVSS-1) due to the filamentous microorganisms' abundance found. Therefore, this study provides insights to value the production of compounds of industrial interest in AGS systems.


Assuntos
Esgotos , Águas Residuárias , Aerobiose , Alginatos , Reatores Biológicos , Carbono , Glucose , Glicerol , Propionatos , Esgotos/química , Triptofano , Eliminação de Resíduos Líquidos/métodos
4.
Chemosphere ; 274: 129881, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33582539

RESUMO

Lately, wastewater treatment plants are much often being designed as wastewater-resource factories inserted in circular cities. Among biological treatment technologies, aerobic granular sludge (AGS), considered an evolution of activated sludge (AS), has received great attention regarding its resource recovery potential. This review presents the state-of-the-art concerning the influence of operational parameters on the recovery of alginate-like exopolysaccharides (ALE), tryptophan, phosphorus, and polyhydroxyalkanoates (PHA) from AGS systems. The carbon to nitrogen ratio was identified as a parameter that plays an important role for the optimal production of ALE, tryptophan, and PHA. The sludge retention time effect is more pronounced for the production of ALE and tryptophan. Additionally, salinity levels in the bioreactors can potentially be manipulated to increase ALE and phosphorus yields simultaneously. Some existing knowledge gaps in the scientific literature concerning the recovery of these resources from AGS were also identified. Regarding industrial applications, tryptophan has the longest way to go. On the other hand, ALE production/recovery could be considered the most mature process if we take into account that existing alternatives for phosphorus and PHA production/recovery are optimized for activated sludge rather than granular sludge. Consequently, to maintain the same effectiveness, these processes likely could not be applied to AGS without undergoing some modification. Therefore, investigating to what extent these adaptations are necessary and designing alternatives is essential.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Aerobiose , Reatores Biológicos , Nitrogênio , Fósforo , Águas Residuárias
5.
Chemosphere ; 262: 127840, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32763570

RESUMO

This work assessed the effect of the antibiotics trimethoprim (TMP) and sulfamethoxazole (SMX) on the granulation process, microbiology, and organic matter and nutrient removal of an aerobic granular sludge (AGS) system. In addition, after the maturation stage, the impact of the redox mediator anthraquinone-2,6-disulfonate (AQDS) (25 µM) on the biotransformation of the antibiotics was evaluated. The reactor R1 was maintained as a control, and the reactor R2 was supplemented with TMP and SMX (200 µg L-1). The ability to remove C, N, and P was similar between the reactors. However, the structural integrity of the AGS was impaired by the antibiotics. Low TMP (∼30%) and SMX (∼60%) removals were achieved when compared to anaerobic or floccular biomass aerobic systems. However, when the system was supplemented with AQDS, an increase in the removal of TMP (∼75%) and SMX (∼95%) was observed, possibly due to the catalytic action of the redox mediator on cometabolic processes. Regarding the microbial groups, whereas Proteobacteria and Bacterioidetes increased, Planctomycetes decreased in both reactors. However, TMP and SMX presence seemed to inhibit or favor some genera during the formation of the granules, possibly due to their bactericidal action.


Assuntos
Microbiota/efeitos dos fármacos , Sulfametoxazol/toxicidade , Trimetoprima/toxicidade , Eliminação de Resíduos Líquidos , Antibacterianos , Bactérias/efeitos dos fármacos , Biomassa , Esgotos , Sulfametoxazol/química , Trimetoprima/química , Microbiologia da Água
6.
Bioresour Technol ; 270: 678-688, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30201322

RESUMO

Aerobic granular sludge (AGS) has been the focus of many investigations, and the main parameters responsible for AGS formation are hydrodynamic shear force, short periods and feast-famine cycles. However, some other parameters are associated with AGS maintenance after long periods of operation. This review evaluates the parameters responsible for AGS formation and maintenance and some reference values are proposed. In addition, some discussions are addressed about the main metabolic pathways that AGS uses for the removal of some compounds, such as nutrients, organic matter, dyes, recalcitrant compounds, among others. Finally, the main microbial groups present in the AGS and their respective functions are discussed. It is also highlighted that many parameters that are taken as reference currently for AGS cultivation and maintenance can be optimized for energy savings, implementation costs, among others, as well as a greater recovery of resources during wastewater treatment, within the scope of the biorefinery concept.


Assuntos
Esgotos , Aerobiose , Reatores Biológicos , Eliminação de Resíduos Líquidos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA