Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Front Microbiol ; 15: 1354140, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516014

RESUMO

The genus Paracoccidioides includes Paracoccidioides lutzii and the Paracoccidioides brasiliensis complex, which comprises four phylogenetic species. A key feature distinguishing planktonic growth from biofilm is the presence of a 3D extracellular matrix (ECM). Therefore, in this study, we analyzed biofilm formation in different species of Paracoccidioides yeast phase, characterized the structural elements of the matrix of P. brasiliensis (Pb18), P. lutzii (Pl01 and 8334) and P. restrepiensis (339 and 192) and evaluated the expression of glucan genes, according to the stage of biofilm evolution for P. brasiliensis. The strains were cultivated in planktonic and biofilm form for 24-144 h. The fungi biomass and metabolic activity were determined by crystal violet and tetrazolium salt reduction (XTT) tests and colony-forming unit (CFU) by plating. The biofilm structure was designed using scanning electron microscopy and confocal laser scanning microscopy techniques. The extracellular matrix of P. brasiliensis and P. lutzii biofilms was extracted by sonication, and polysaccharides, proteins, and extracellular DNA (eDNA) were quantified. The RNA was extracted with the Trizol® reagent and quantified; then, the cDNA was synthesized to analyze the enolase expression, 14-3-3, FKS1, AGS1, GEL3, and KRE6 genes by real-time PCR. All strains of Paracoccidioides studied form a biofilm with more significant metabolic activity and biomass values in 144 h. The extracellular matrix of P. brasiliensis and P. lutzii had a higher content of polysaccharides in their composition, followed by proteins and eDNA in smaller quantities. The P. brasiliensis biofilm kinetics of formation showed greater expression of genes related to glucan's synthesis and its delivery to the external environment in addition adhesins during the biofilm's adhesion, initiation, and maturation. The GEL3 and enolase genes increased in expression within 24 h and during the biofilm maturation period, there was an increase in 14-3-3, AGS1, and FKS1. Furthermore, at 144 h, there was a decrease in KRE6 expression and an increase in GEL3. This study highlights the potential for biofilm formation for three species of Paracoccidioides and the main components of the extracellular matrix that can contribute to a better understanding of biofilm organization.

2.
Microb Pathog ; 188: 106537, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211834

RESUMO

Paracoccidioidomycosis (PCM) is a systemic mycosis caused by Paracoccidioides spp. The interaction mediated by the presence of adhesins on the fungal surface and receptors in the extracellular matrix of the host, as well as the biofilm formation, is essential in its pathogenesis. Adhesins such as gp43, enolase, GAPDH (glyceraldehyde-3-phosphate dehydrogenase), and 14-3-3 have been demonstrated in the Paracoccidioides brasiliensis (Pb18) strain and recognized as necessary in the fungus-host interaction. The Pb 18 strain silenced to 14-3-3 showed changes in morphology, virulence, and adhesion capacity. The study aimed to evaluate the role of adhesin 14-3-3 in P. brasiliensis biofilm formation and the differential expression of genes related to adhesins, comparing planktonic and biofilm forms. The presence of biofilm was also verified in sutures in vitro and in vivo. The silenced strain (Pb14-3-3 aRNA) was compared with the wild type Pb18, determining the differential metabolic activity between the strains by the XTT reduction assay; the biomass by violet crystal and the polysaccharides by safranin, even as morphological differences by microscopic techniques. Differential gene expression for adhesins was also analyzed, comparing the relative expression of these in planktonic and biofilm forms at different times. The results suggested that the silencing of 14-3-3 protein altered the ability to form biofilm and its metabolism. The quantity of biomass was similar in both strains; however, the formation of exopolymeric substances and polysaccharide material was lower in the silenced strain. Our results showed increased expression of enolase, GAPDH, and 14-3-3 genes in the first periods of biofilm formation in the Pb18 strain. In contrast, the silenced strain showed a lower expression of these genes, indicating that gene silencing can influence the expression of other genes and be involved in the biofilm formation of P. brasiliensis. In vitro and in vivo assays using sutures confirmed this yeast's ability to form biofilm and may be implicated in the pathogenesis of paracoccidioidomycosis.


Assuntos
Paracoccidioides , Paracoccidioidomicose , Paracoccidioides/genética , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases , Biofilmes , Adesinas Bacterianas/metabolismo , Fosfopiruvato Hidratase/genética
3.
J Control Release ; 365: 744-758, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072085

RESUMO

Amphotericin B (AmB) is the gold standard for antifungal drugs. However, AmB systemic administration is restricted because of its side effects. Here, we report AmB loaded in natural rubber latex (NRL), a sustained delivery system with low toxicity, which stimulates angiogenesis, cell adhesion and accelerates wound healing. Physicochemical characterizations showed that AmB did not bind chemically to the polymeric matrix. Electronic and topographical images showed small crystalline aggregates from AmB crystals on the polymer surface. About 56.6% of AmB was released by the NRL in 120 h. However, 33.6% of this antifungal was delivered in the first 24 h due to the presence of AmB on the polymer surface. The biomaterial's excellent hemo- and cytocompatibility with erythrocytes and human dermal fibroblasts (HDF) confirmed its safety for dermal wound application. Antifungal assay against Candida albicans showed that AmB-NRL presented a dose-dependent behavior with an inhibition halo of 30.0 ± 1.0 mm. Galleria mellonella was employed as an in vivo model for C. albicans infection. Survival rates of 60% were observed following the injection of AmB (0.5 mg.mL-1) in G. mellonella larvae infected by C. albicans. Likewise, AmB-NRL (0.5 mg.mL-1) presented survival rates of 40%, inferring antifungal activity against fungus. Thus, NRL adequately acts as an AmB-sustained release matrix, which is an exciting approach, since this antifungal is toxic at high concentrations. Our findings suggest that AmB-NRL is an efficient, safe, and reasonably priced ($0.15) dressing for the treatment of cutaneous fungal infections.


Assuntos
Candidíase , Infecção dos Ferimentos , Humanos , Anfotericina B , Antifúngicos/química , Bandagens , Candida albicans , Candidíase/tratamento farmacológico , Látex , Testes de Sensibilidade Microbiana , Infecção dos Ferimentos/tratamento farmacológico
4.
J Fungi (Basel) ; 9(10)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37888236

RESUMO

Considering the toxicity of conventional therapeutic approaches and the importance of precise mechanistic targets, it is important to explore signaling pathways implicated in fungal pathobiology. Moreover, treatment of paracoccidioidomycosis, a systemic mycosis caused by a dimorphic fungus, requires prolonged therapeutic regimens. Among the numerous factors underpinning the establishment of Paracoccidioides spp. infection, the capacity to transition from the mycelial to the yeast form is of pivotal importance. The Drk1 protein of Paracoccidioides brasiliensis likely plays a decisive role in this morphological shift and subsequent virulence. We identified peptides with affinity for the PbDrk1 protein using the phage-display method and assessed the effects of these peptides on P. brasiliensis. The peptides were found to inhibit the phase transition of P. brasiliensis. Furthermore, a substantial proportion of these peptides prevented adhesion to pneumocytes. Although these peptides may not possess inherent antifungal properties, they can augment the effects of certain antifungal agents. Notably, the cell wall architecture of P. brasiliensis appears to be modulated by peptide intervention, resulting in a reduced abundance of glycosylated proteins and lipids. These peptides were also evaluated for their efficacy in a Galleria mellonella model and shown to contribute to enhanced larval survival rates. The role of PbDrk1, which is notably absent in mammals, should be further investigated to improve the understanding of its functional role in P. brasiliensis, which may be helpful for designing novel therapeutic modalities.

5.
J Fungi (Basel) ; 9(9)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37755051

RESUMO

In the study of fungal pathogenesis, alternative methods have gained prominence due to recent global legislation restricting the use of mammalian animals in research. The principle of the 3 Rs (replacement, reduction, and refinement) is integrated into regulations and guidelines governing animal experimentation in nearly all countries. This principle advocates substituting vertebrate animals with other invertebrate organisms, embryos, microorganisms, or cell cultures. This review addresses host-fungus interactions by employing three-dimensional (3D) cultures, which offer more faithful replication of the in vivo environment, and by utilizing alternative animal models to replace traditional mammals. Among these alternative models, species like Caenorhabditis elegans and Danio rerio share approximately 75% of their genes with humans. Furthermore, models such as Galleria mellonella and Tenebrio molitor demonstrate similarities in their innate immune systems as well as anatomical and physiological barriers, resembling those found in mammalian organisms.

6.
J Fungi (Basel) ; 9(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37367570

RESUMO

A three-dimensional (3D) lung aggregate model based on sodium alginate scaffolds was developed to study the interactions between Paracoccidioides brasiliensis (Pb) and lung epithelial cells. The suitability of the 3D aggregate as an infection model was examined using cell viability (cytotoxicity), metabolic activity, and proliferation assays. Several studies exemplify the similarity between 3D cell cultures and living organisms, which can generate complementary data due to the greater complexity observed in these designed models, compared to 2D cell cultures. A 3D cell culture system of human A549 lung cell line plus sodium alginate was used to create the scaffolds that were infected with Pb18. Our results showed low cytotoxicity, evidence of increased cell density (indicative of cell proliferation), and the maintenance of cell viability for seven days. The confocal analysis revealed viable yeast within the 3D scaffold, as demonstrated in the solid BHI Agar medium cultivation. Moreover, when ECM proteins were added to the alginate scaffolds, the number of retrieved fungi was significantly higher. Our results highlight that this 3D model may be promising for in vitro studies of host-pathogen interactions.

7.
Int J Biol Macromol ; 242(Pt 1): 124778, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37172704

RESUMO

Natural rubber latex (NRL) is a biopolymer widely used in biomedical applications. In this work, we propose an innovative cosmetic face mask, combining the NRL's biological properties with curcumin (CURC), which has a high level of antioxidant activity (AA) to provide anti-aging benefits. Chemical, mechanical and morphological characterizations were performed. The CURC released by the NRL was evaluated by permeation in Franz cells. Cytotoxicity and hemolytic activity assays were performed to assess safety. The findings showed that the biological properties of CURC were preserved after loading in the NRL. About 44.2 % of CURC was released within the first six hours, and in vitro permeation showed that 9.36 % ± 0.65 was permeated over 24h. CURC-NRL was associated with a metabolic activity higher than 70 % in 3 T3 fibroblasts, cell viability ≥95 % in human dermal fibroblasts, and a hemolytic rate ≤ 2.24 % after 24 h. Furthermore, CURC-NRL maintained the mechanical characteristics (range suitable) for human skin application. We observed that CURC-NRL preserved ~20 % antioxidant activity from curcumin-free after loading in the NRL. Our results suggest that CURC-NRL has the potential to be used in the cosmetics industry, and the experimental methodology utilized in this study can be applied to different kinds of face masks.


Assuntos
Curcumina , Borracha , Humanos , Antioxidantes/farmacologia , Máscaras , Curcumina/farmacologia , Curcumina/química , Envelhecimento
8.
Pharmaceutics ; 15(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36678893

RESUMO

Invasive fungal infections increase mortality and morbidity rates worldwide. The treatment of these infections is still limited due to the low bioavailability and toxicity, requiring therapeutic monitoring, especially in the most severe cases. Voriconazole is an azole widely used to treat invasive aspergillosis, other hyaline molds, many dematiaceous molds, Candida spp., including those resistant to fluconazole, and for infections caused by endemic mycoses, in addition to those that occur in the central nervous system. However, despite its broad activity, using voriconazole has limitations related to its non-linear pharmacokinetics, leading to supratherapeutic doses and increased toxicity according to individual polymorphisms during its metabolism. In this sense, nanotechnology-based drug delivery systems have successfully improved the physicochemical and biological aspects of different classes of drugs, including antifungals. In this review, we highlighted recent work that has applied nanotechnology to deliver voriconazole. These systems allowed increased permeation and deposition of voriconazole in target tissues from a controlled and sustained release in different routes of administration such as ocular, pulmonary, oral, topical, and parenteral. Thus, nanotechnology application aiming to delivery voriconazole becomes a more effective and safer therapeutic alternative in the treatment of fungal infections.

9.
Pharmaceutics ; 14(5)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35631629

RESUMO

Histoplasma capsulatum is a fungus that causes histoplasmosis. The increased evolution of microbial resistance and the adverse effects of current antifungals help new drugs to emerge. In this work, fifty-four nitrofurans and indoles were tested against the H. capsulatum EH-315 strain. Compounds with a minimum inhibitory concentration (MIC90) equal to or lower than 7.81 µg/mL were selected to evaluate their MIC90 on ATCC G217-B strain and their minimum fungicide concentration (MFC) on both strains. The quantification of membrane ergosterol, cell wall integrity, the production of reactive oxygen species, and the induction of death by necrosis-apoptosis was performed to investigate the mechanism of action of compounds 7, 11, and 32. These compounds could reduce the extracted sterol and induce necrotic cell death, similarly to itraconazole. Moreover, 7 and 11 damaged the cell wall, causing flaws in the contour (11), or changing the size and shape of the fungal cell wall (7). Furthermore, 7 and 32 induced reactive oxygen species (ROS) formation higher than 11 and control. Finally, the cytotoxicity was measured in two models of cell culture, i.e., monolayers (cells are flat) and a three-dimensional (3D) model, where they present a spheroidal conformation. Cytotoxicity assays in the 3D model showed a lower toxicity in the compounds than those performed on cell monolayers. Overall, these results suggest that derivatives of nitrofurans and indoles are promising compounds for the treatment of histoplasmosis.

10.
Pharmaceutics ; 14(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35335969

RESUMO

Fungal diseases affect more than 1 billion people worldwide. The constant global changes, the advent of new pandemics, and chronic diseases favor the diffusion of fungal pathogens such as Candida, Cryptococcus, Aspergillus, Trichophyton, Histoplasma capsulatum, and Paracoccidioides brasiliensis. In this work, a series of nitrofuran derivatives were synthesized and tested against different fungal species; most of them showed inhibitory activity, fungicide, and fungistatic profile. The minimal inhibitory concentration (MIC90) values for the most potent compounds range from 0.48 µg/mL against H. capsulatum (compound 11) and P. brasiliensis (compounds 3 and 9) to 0.98 µg/mL against Trichophyton rubrum and T. mentagrophytes (compounds 8, 9, 12, 13 and 8, 12, 13, respectively), and 3.9 µg/mL against Candida and Cryptococcus neoformans strains (compounds 1 and 5, respectively). In addition, all compounds showed low toxicity when tested in vitro on lung cell lines (A549 and MRC-5) and in vivo in Caenorhabditis elegans larvae. Many of them showed high selectivity index values. Thus, these studied nitrofuran derivatives proved to be potent against different fungal species, characterized by low toxicity and high selectivity; for these reasons, they may become promising compounds for the treatment of mycoses.

12.
J Fungi (Basel) ; 7(10)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34682273

RESUMO

P. brasiliensis is a thermally dimorphic fungus belonging to Paracoccidioides complex, causative of a systemic, endemic mycosis limited to Latin American countries. Signal transduction pathways related to important aspects as surviving, proliferation according to the biological niches are linked to the fungal pathogenicity in many species, but its elucidation in P. brasiliensis remains poorly explored. As Drk1, a hybrid histidine kinase, plays regulators functions in other dimorphic fungi species, mainly in dimorphism and virulence, here we investigated its importance in P. brasilensis. We, therefore generated the respective recombinant protein, anti-PbDrk1 polyclonal antibody and a silenced strain. The Drk1 protein shows a random distribution including cell wall location that change its pattern during osmotic stress condition; moreover the P. brasiliensis treatment with anti-PbDrk1 antibody, which does not modify the fungus's viability, resulted in decreased virulence in G. mellonella model and reduced interaction with pneumocytes. Down-regulating PbDRK1 yielded phenotypic alterations such as yeast cells with more elongated morphology, virulence attenuation in G. mellonella infection model, lower amount of chitin content, increased resistance to osmotic and cell wall stresses, and also caspofungin, and finally increased sensitivity to itraconazole. These observations highlight the importance of PbDrk1 to P. brasiliensis virulence, stress adaptation, morphology, and cell wall organization, and therefore it an interesting target that could help develop new antifungals.

13.
Antimicrob Agents Chemother ; 65(12): e0090421, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34516241

RESUMO

Cryptococcosis is associated with high rates of morbidity and mortality, especially in AIDS patients. Its treatment is carried out by combining amphotericin B and azoles or flucytosine, which causes unavoidable toxicity issues in the host. Thus, the urgency in obtaining new antifungals drives the search for antimicrobial peptides (AMPs). This study aimed to extend the understanding of the mechanism of action of an AMP analog from wasp peptide toxins, MK58911-NH2, on Cryptococcus neoformans. We also evaluated if MK58911-NH2 can act on cryptococcal cells in macrophages, biofilms, and an immersion zebrafish model of infection. Finally, we investigated the structure-antifungal action and the toxicity relationship of MK58911-NH2 fragments and a derivative of this peptide (MH58911-NH2). The results demonstrated that MK58911-NH2 did not alter the fluorescence intensity of the cell wall-binding dye calcofluor white or the capsule-binding dye 18b7 antibody-fluorescein isothiocyanate (FITC) in C. neoformans but rather reduced the number and size of fungal cells. This activity reduced the fungal burden of C. neoformans in both macrophages and zebrafish embryos as well as within biofilms. Three fragments of the MK58911-NH2 peptide showed no activity against Cryptococcus and not toxicity in lung cells. The derivative peptide MH58911-NH2, in which the lysine residues of MK58911-NH2 were replaced by histidines, reduced the activity against extracellular and intracellular C. neoformans. On the other hand, it was active against biofilms and showed reduced toxicity. In summary, these results showed that peptide MK58911-NH2 could be a promising agent against cryptococcosis. This work also opens a perspective for the verification of the antifungal activity of other derivatives.


Assuntos
Antifúngicos/farmacologia , Peptídeos Antimicrobianos/farmacologia , Cryptococcus neoformans , Animais , Biofilmes , Criptococose/tratamento farmacológico , Cryptococcus neoformans/efeitos dos fármacos , Humanos , Macrófagos/microbiologia , Testes de Sensibilidade Microbiana , Peixe-Zebra
14.
Int J Biol Macromol ; 189: 597-606, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34418421

RESUMO

Millions of people are burned worldwide every year and 265,000 of the cases are fatal. The development of burn treatment cannot consist only of the administration of a single drug. Due to the infection risk, antibiotics are used in conjunction with gels and damp bandages. In this work, an inexpensive curative based on silver sulfadiazine (SS) and natural rubber latex (NRL) was developed to treat burn wounds. It was produced by the casting method. The infrared spectrum presented no interaction between drug and biopolymer. At the same time, electronic micrographs showed that the SS crystals are inserted on the polymeric dressing surface. Mechanical properties after the drug incorporation were considered suitable for dermal application. About 32.4% of loaded SS was released in 192 h by the dressings that also inhibited the growth of Candida albicans and Candida parapsilosis at 75.0 and 37.5 µg·mL-1, respectively. The curative proved to be biocompatible when applied to fibroblast cells, in addition to enhancing cellular proliferation and, in the hemocompatibility test, no hemolytic effects were observed. The good results in mechanical, antifungal and biological assays, combined with the average bandage cost of $0.10, represent an exciting alternative for treating burn wounds.


Assuntos
Bandagens , Queimaduras/tratamento farmacológico , Queimaduras/microbiologia , Candida/fisiologia , Borracha/farmacologia , Sulfadiazina de Prata/uso terapêutico , Animais , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Cinética , Camundongos , Testes de Sensibilidade Microbiana , Células NIH 3T3 , Ovinos , Sulfadiazina de Prata/química , Sulfadiazina de Prata/farmacologia , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Front Cell Infect Microbiol ; 11: 679470, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055673

RESUMO

Dermatophytes, fungi that cause dermatophytosis, can invade keratinized tissues in humans and animals. The biofilm-forming ability of these fungi was described recently, and it may be correlated with the long treatment period and common recurrences of this mycosis. In this study, we evaluated the anti-dermatophytic and anti-biofilm activity of 2-hydroxychalcone (2-chalcone) in the dark and photodynamic therapy (PDT)-mediated and to determine its mechanism of action. Trichophyton rubrum and Trichophyton mentagrophytes strains were used in the study. The antifungal susceptibility test of planktonic cells, early-stage biofilms, and mature biofilms were performed using colorimetric methods. Topographies were visualized by scanning electron microscopy (SEM). Human skin keratinocyte (HaCat) monolayers were also used in the cytotoxicity assays. The mechanisms of action of 2-chalcone in the dark and under photoexcitation were investigated using confocal microscopy and the quantification of ergosterol, reactive oxygen species (ROS), and death induction by apoptosis/necrosis. All strains, in the planktonic form, were inhibited after treatment with 2-chalcone (minimum inhibitory concentration (MIC) = 7.8-15.6 mg/L), terbinafine (TRB) (MIC = 0.008-0.03 mg/L), and fluconazole (FLZ) (1-512 mg/L). Early-stage biofilm and mature biofilms were inhibited by 2-chalcone at concentrations of 15.6 mg/L and 31.2 mg/L in all tested strains. However, mature biofilms were resistant to all the antifungal drugs tested. When planktonic cells and biofilms (early-stage and mature) were treated with 2-chalcone-mediated PDT, the inhibitory concentrations were reduced by four times (2-7.8 mg/L). SEM images of biofilms treated with 2-chalcone showed cell wall collapse, resulting from a probable extravasation of cytoplasmic content. The toxicity of 2-chalcone in HaCat cells showed higher IC50 values in the dark than under photoexcitation. Further, 2-chalcone targets ergosterol in the cell and promotes the generation of ROS, resulting in cell death by apoptosis and necrosis. Overall, 2-chalcone-mediated PDT is a promising and safe drug candidate against dermatophytes, particularly in anti-biofilm treatment.


Assuntos
Arthrodermataceae , Chalconas , Animais , Antifúngicos/farmacologia , Biofilmes , Chalconas/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Fármacos Fotossensibilizantes/farmacologia
16.
Mem Inst Oswaldo Cruz ; 116: e200592, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33787770

RESUMO

BACKGROUND: Paracoccidioidomycosis (PCM) is a systemic mycosis with high prevalence in Latin America that is caused by thermodimorphic fungal species of the Paracoccidioides genus. OBJECTIVES: In this study, we used quantitative polymerase chain reaction (qPCR) to investigate the expression of genes related to the virulence of Paracoccidioides brasiliensis (Pb18) and P. lutzii (Pb01) strains in their mycelial (M) and yeast (Y) forms after contact with alveolar macrophages (AMJ2-C11 cell line) and fibroblasts (MRC-5 cell line). METHODS: The selected genes were those coding for 43 kDa glycoprotein (gp43), enolase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 14-3-3 protein (30 kDa), phospholipase, and aspartyl protease. FINDINGS: In the Pb18 M form, the aspartyl protease gene showed the highest expression among all genes tested, both before and after infection of host cells. In the Pb18 Y form after macrophage infection, the 14-3-3 gene showed the highest expression among all genes tested, followed by the phospholipase and gp43 genes, and their expression was 50-fold, 10-fold, and 6-fold higher, respectively, than that in the M form. After fibroblast infection with the Pb18 Y form, the 14-3-3 gene showed the highest expression, followed by the phospholipase and aspartyl protease genes, and their expression was 25-fold, 10-fold, and 10-fold higher, respectively, than that in the M form. Enolase and aspartyl protease genes were expressed upon infection of both cell lines. After macrophage infection with the Pb01 Y form, the 14-3-3 gene showed the highest expression, followed by the phospholipase and aspartyl protease genes, and their expression was 18-fold, 12.5-fold, and 6-fold higher, respectively, than that in the M form. MAIN CONCLUSIONS: In conclusion, the data show that the expression of the genes analysed may be upregulated upon fungus-host interaction. Therefore, these genes may be involved in the pathogenesis of paracoccidioidomycosis.


Assuntos
Fibroblastos , Macrófagos , Paracoccidioides/genética , Paracoccidioidomicose/genética , Fatores de Virulência/genética , Expressão Gênica , Humanos , América Latina , Paracoccidioides/patogenicidade
17.
J Fungi (Basel) ; 7(1)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477397

RESUMO

Histoplasma capsulatum affects healthy and immunocompromised individuals, sometimes causing a severe disease. This fungus has two morphotypes, the mycelial (infective) and the yeast (parasitic) phases. MicroRNAs (miRNAs) are small RNAs involved in the regulation of several cellular processes, and their differential expression has been associated with many disease states. To investigate miRNA expression in host cells during H. capsulatum infection, we studied the changes in the miRNA profiles of differentiated human macrophages infected with yeasts from two fungal strains with different virulence, EH-315 (high virulence) and 60I (low virulence) grown in planktonic cultures, and EH-315 grown in biofilm form. MiRNA profiles were evaluated by means of reverse transcription-quantitative polymerase chain reaction using a commercial human miRNome panel. The target genes of the differentially expressed miRNAs and their corresponding signaling pathways were predicted using bioinformatics analyses. Here, we confirmed biofilm structures were present in the EH-315 culture whose conditions facilitated producing insoluble exopolysaccharide and intracellular polysaccharides. In infected macrophages, bioinformatics analyses revealed especially increased (hsa-miR-99b-3p) or decreased (hsa-miR-342-3p) miRNAs expression levels in response to infection with biofilms or both growth forms of H. capsulatum yeasts, respectively. The results of miRNAs suggested that infection by H. capsulatum can affect important biological pathways of the host cell, targeting two genes: one encoding a protein that is important in the cortical cytoskeleton; the other, a protein involved in the formation of stress granules. Expressed miRNAs in the host's response could be proposed as new therapeutic and/or diagnostic tools for histoplasmosis.

18.
Front Microbiol ; 11: 551256, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178146

RESUMO

The oral cavity is a highly diverse microbial environment in which microorganisms interact with each other, growing as biofilms on biotic and abiotic surfaces. Understanding the interaction among oral microbiota counterparts is pivotal for clarifying the pathogenesis of oral diseases. Candida spp. is one of the most abundant fungi in the oral mycobiome with the ability to cause severe soft tissue lesions under certain conditions. Paracoccidioides spp., the causative agent of paracoccidioidomycosis, may also colonize the oral cavity leading to soft tissue damage. It was hypothesized that both fungi can interact with each other, increasing the growth of the biofilm and its virulence, which in turn can lead to a more aggressive infectivity. Therefore, this study aimed to evaluate the dynamics of mono- and dual-species biofilm growth of Paracoccidioides brasiliensis and Candida albicans and their infectivity using the Galleria mellonella model. Biomass and fungi metabolic activity were determined by the crystal violet and the tetrazolium salt reduction tests (XTT), respectively, and the colony-forming unit (CFU) was obtained by plating. Biofilm structure was characterized by both scanning electronic- and confocal laser scanning- microscopy techniques. Survival analysis of G. mellonella was evaluated to assess infectivity. Our results showed that dual-species biofilm with P. brasiliensis plus C. albicans presented a higher biomass, higher metabolic activity and CFU than their mono-species biofilms. Furthermore, G. mellonella larvae infected with P. brasiliensis plus C. albicans presented a decrease in the survival rate compared to those infected with P. brasiliensis or C. albicans, mainly in the form of biofilms. Our data indicate that P. brasiliensis and C. albicans co-existence is likely to occur on oral mucosal biofilms, as per in vitro and in vivo analysis. These data further widen the knowledge associated with the dynamics of fungal biofilm growth that can potentially lead to the discovery of new therapeutic strategies for these infections.

19.
Front Microbiol ; 11: 1980, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013741

RESUMO

Dermatomycoses include superficial fungal infections of the skin and its appendages. Trichophyton rubrum, Candida albicans, and Candida parapsilosis are some of the most prevalent species that cause dermatomycoses. Several studies show a variable predominance of Candida spp. in relation to dermatophytes, especially in onychomycosis and the possibility of isolating both from the same site. The ability of dermatophytes to form biofilms recently been explored and there is currently no evidence on the involvement of these filamentous fungi in multi-species biofilms. Thus, this study aims to investigate the probable dual-species interaction between T. rubrum and C. albicans and T. rubrum and C. parapsilosis biofilms, considering variable formation conditions, as well as the susceptibility of these dual-species biofilms against terbinafine and efinaconazole. Three conditions of formation of dual-species biofilms were tested: (a) the suspensions of T. rubrum and Candida albicans or C. parapsilosis placed together; (b) suspensions of C. albicans and C. parapsilosis added the pre-adhesion of T. rubrum biofilms; (c) after the maturation of T. rubrum sessile cells. In the first and second conditions, the quantification of metabolic activities, biomass, and polysaccharide materials of mixed biofilms tended to resemble Candida monospecies biofilms. In the third condition, the profiles were modified after the addition of Candida, suggesting that T. rubrum biofilms served as substrate for the development of Candida biofilms. Scanning electron microscopy showed Candida predominance, however, numerous blastoconidia were noted, most evident in the conditions under which Candida was added after the pre-adhesion and maturation of T. rubrum biofilms. Despite the predominance of Candida, the presence of T. rubrum appears to inhibit C. albicans filamentation and C. parapsilosis development, confirming an antagonistic interaction. Fungal burden assays performed when the biofilms were formed together confirmed Candida predominance, as well as susceptibility to antifungals. Further studies will be needed to identify the components of the Candida and T. rubrum biofilm supernatants responsible for inhibiting dermatophyte growth and C. albicans filamentation.

20.
J Fungi (Basel) ; 6(3)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872100

RESUMO

Plants belonging to the genus Copaifera are widely used in Brazil due to their antimicrobial properties, among others. The re-emergence of classic fungal diseases as a consequence of antifungal resistance to available drugs has stimulated the search for plant-based compounds with antifungal activity, especially against Candida. The Candida-infected Caenorhabditis elegans model was used to evaluate the in vitro antifungal potential of Copaifera leaf extracts and trunk oleoresins against Candida species. The Copaifera leaf extracts exhibited good antifungal activity against all Candida species, with MIC values ranging from 5.86 to 93.75 µg/mL. Both the Copaifera paupera and Copaifera reticulata leaf extracts at 46.87 µg/mL inhibited Candida glabrata biofilm formation and showed no toxicity to C. elegans. The survival of C. glabrata-infected nematodes increased at all the tested extract concentrations. Exposure to Copaifera leaf extracts markedly increased C. glabrata cell vacuolization and cell membrane damage. Therefore, Copaifera leaf extracts are potential candidates for the development of new and safe antifungal agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA