Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Biol ; 33(8): R313-R316, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37098336

RESUMO

Mirror neurons have been found mainly in neocortical structures of primates and rodents; however, their functions are still debated. A new study has discovered mirror neurons for aggressive behaviors in the ventromedial hypothalamus of mice, an evolutionarily ancient structure, highlighting a new function key for survival.


Assuntos
Neurônios-Espelho , Camundongos , Animais , Agressão/fisiologia , Hipotálamo/fisiologia
2.
Philos Trans R Soc Lond B Biol Sci ; 377(1863): 20210512, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36126660

RESUMO

Although sensory processing is pivotal to nearly every theory of emotion, the evaluation of the visual input as 'emotional' (e.g. a smile as signalling happiness) has been traditionally assumed to take place in supramodal 'limbic' brain regions. Accordingly, subcortical structures of ancient evolutionary origin that receive direct input from the retina, such as the superior colliculus (SC), are traditionally conceptualized as passive relay centres. However, mounting evidence suggests that the SC is endowed with the necessary infrastructure and computational capabilities for the innate recognition and initial categorization of emotionally salient features from retinal information. Here, we built a neurobiologically inspired convolutional deep neural network (DNN) model that approximates physiological, anatomical and connectional properties of the retino-collicular circuit. This enabled us to characterize and isolate the initial computations and discriminations that the DNN model of the SC can perform on facial expressions, based uniquely on the information it directly receives from the virtual retina. Trained to discriminate facial expressions of basic emotions, our model matches human error patterns and above chance, yet suboptimal, classification accuracy analogous to that reported in patients with V1 damage, who rely on retino-collicular pathways for non-conscious vision of emotional attributes. When presented with gratings of different spatial frequencies and orientations never 'seen' before, the SC model exhibits spontaneous tuning to low spatial frequencies and reduced orientation discrimination, as can be expected from the prevalence of the magnocellular (M) over parvocellular (P) projections. Likewise, face manipulation that biases processing towards the M or P pathway affects expression recognition in the SC model accordingly, an effect that dovetails with variations of activity in the human SC purposely measured with ultra-high field functional magnetic resonance imaging. Lastly, the DNN generates saliency maps and extracts visual features, demonstrating that certain face parts, like the mouth or the eyes, provide higher discriminative information than other parts as a function of emotional expressions like happiness and sadness. The present findings support the contention that the SC possesses the necessary infrastructure to analyse the visual features that define facial emotional stimuli also without additional processing stages in the visual cortex or in 'limbic' areas. This article is part of the theme issue 'Cracking the laugh code: laughter through the lens of biology, psychology and neuroscience'.


Assuntos
Emoções , Colículos Superiores , Animais , Emoções/fisiologia , Humanos , Redes Neurais de Computação , Primatas , Retina , Colículos Superiores/fisiologia
3.
Neuroimage ; 217: 116939, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32416229

RESUMO

We effortlessly sort people into different racial groups from their visual appearance and implicitly generate racial bias affecting cognition and behavior. As these mental activities provide the proximate mechanisms for social behaviours, it becomes essential to understand the neural activity underlying differences between own-race and other-race visual categorization. Yet intrinsic limitations of individual neuroimaging studies, owing to reduced sample size, inclusion of multiple races, and interactions between races in the participants and in the displayed visual stimuli, dampens generalizability of results. In the present meta-analytic study, we applied multimodal techniques to partly overcome these hurdles, and we investigated the entire functional neuroimaging literature on race categorization, therefore including more than 2000 Black, White and Asian participants. Our data-driven approach shows that own- and other-race visual categorization involves partly segregated neural networks, with distinct connectivity and functional profiles, and defined hierarchical organization. Categorization of own-race mainly engages areas related to cognitive components of empathy and mentalizing, such as the medial prefrontal cortex and the inferior frontal gyrus. These areas are functionally co-activated with cortical structures involved in auto-biographical memories and social knowledge. Conversely, other-race categorization recruits areas implicated in, and functionally connected with, visuo-attentive processing, like the fusiform gyrus and the inferior parietal lobule, and areas engaged in affective functions, like the amygdala. These results contribute to a better definition of the neural networks involved in the visual parcelling of social categories based on race, and help to situate these processes within a common neural space.


Assuntos
Neuroanatomia , Grupos Raciais , Percepção Visual/fisiologia , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/fisiologia , Povo Asiático , Atenção , População Negra , Mapeamento Encefálico , Feminino , Humanos , Funções Verossimilhança , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiologia , Estimulação Luminosa , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Comportamento Social , Percepção Social , Lobo Temporal , População Branca , Adulto Jovem
4.
Neuropsychologia ; 128: 109-118, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29894718

RESUMO

Blindsight, the residual abilities of patients with cortical blindness to respond proficiently to stimuli they do not consciously acknowledge, offers a unique opportunity to study the functional and anatomical mechanisms sustaining visual awareness. Over decades, the phenomenon has been documented in a wide number of different patients, across independent laboratories, and for a variety of tasks and stimulus properties. Nevertheless, the functional neuroanatomy of blindsight remains elusive and alternative proposals have been put forth. To tackle this issue from a novel perspective, we performed a quantitative Activation Likelihood Estimation (ALE) meta-analysis on the neuroimaging literature available on blindsight. Significant activity was reported in subcortical structures, such as the superior colliculus, pulvinar and amygdala, as well as in cortical extrastriate areas along the dorsal and ventral visual stream. This data-driven functional network collectively defines the extant neural fingerprint of blindsight. To further characterize the unique combination of segregation and integration in brain networks engaged in blindsight, we measured the relationship between active areas and experimental features in the original studies, their clustering and hierarchical organization. Results support a network-based organization in the functional neuroanatomy of blindsight, which likely reflects the intersection of different stimulus properties and behavioural tasks examined. We suggest that the conceptualization of blindsight as a constellation of multiple nonconscious visual abilities is better apt as a summary of present-day wisdom, thereby mirroring the variety of existing V1-independent pathway and their different functional roles.


Assuntos
Cegueira Cortical/patologia , Algoritmos , Conscientização , Cegueira Cortical/diagnóstico por imagem , Análise por Conglomerados , Humanos , Funções Verossimilhança , Imageamento por Ressonância Magnética , Metanálise como Assunto , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Neuroimagem , Vias Visuais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA