Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Immunol Rev ; 301(1): 193-208, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33913182

RESUMO

Leprosy is a much-feared incapacitating infectious disease caused by Mycobacterium leprae or M lepromatosis, annually affecting roughly 200,000 people worldwide. During host-pathogen interaction, M leprae subverts the immune response, leading to development of disease. Throughout the last few decades, the impact of energy metabolism on the control of intracellular pathogens and leukocytic differentiation has become more evident. Mitochondria play a key role in regulating newly-discovered immune signaling pathways by controlling redox metabolism and the flow of energy besides activating inflammasome, xenophagy, and apoptosis. Likewise, this organelle, whose origin is probably an alphaproteobacterium, directly controls the intracellular pathogens attempting to invade its niche, a feature conquered at the expense of billions of years of coevolution. In the present review, we discuss the role of reduced host cell mitochondrial activity during M leprae infection and the consequential fates of M leprae and host innate immunity. Conceivably, inhibition of mitochondrial energy metabolism emerges as an overlooked and novel mechanism developed by M leprae to evade xenophagy and the host immune response.


Assuntos
Hanseníase , Mycobacterium leprae , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Mitocôndrias
2.
Mol Neurobiol ; 55(11): 8668-8679, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29582399

RESUMO

Perinatal asphyxia remains a significant cause of neonatal mortality and is associated with long-term neurodegenerative disorders. In the present study, we evaluated cellular and subcellular damages to brain development in a model of mild perinatal asphyxia. Survival rate in the experimental group was 67%. One hour after the insult, intraperitoneally injected Evans blue could be detected in the fetuses' brains, indicating disruption of the blood-brain barrier. Although brain mass and absolute cell numbers (neurons and non-neurons) were not reduced after perinatal asphyxia immediately and in late brain development, subcellular alterations were detected. Cortical oxygen consumption increased immediately after asphyxia, and remained high up to 7 days, returning to normal levels after 14 days. We observed an increased resistance to mitochondrial membrane permeability transition, and calcium buffering capacity in asphyxiated animals from birth to 14 days after the insult. In contrast to ex vivo data, mitochondrial oxygen consumption in primary cell cultures of neurons and astrocytes was not altered after 1% hypoxia. Taken together, our results demonstrate that although newborns were viable and apparently healthy, brain development is subcellularly altered by perinatal asphyxia. Our findings place the neonate brain mitochondria as a potential target for therapeutic protective interventions.


Assuntos
Asfixia/patologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Mitocôndrias/patologia , Animais , Animais Recém-Nascidos , Asfixia/sangue , Astrócitos/metabolismo , Astrócitos/patologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Encéfalo/metabolismo , Hipóxia Celular , Respiração Celular , Células Cultivadas , Citrato (si)-Sintase/metabolismo , Metabolismo Energético , Feminino , Lactatos/sangue , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Tamanho do Órgão , Permeabilidade , Ratos Wistar , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA