Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258915

RESUMO

Graphyne and two-dimensional porous carbon-based materials have garnered significant attention due to their interesting structural characteristics and essential properties for new technological applications. Within this scope, this work investigates the structural, thermal, electronic, optical, and mechanical properties of a novel two-dimensional allotrope that combines triangular (T) and hexagonal (H) rings, connected by acetylenic linkages (graphyne-like), thus named TH-graphyne (TH-GY). This study comprehensively characterizes the proposed system's behavior using density functional theory, ab initio molecular dynamics, and classical reactive molecular dynamics simulations. Our results confirm the structural stability of TH-GY. AIMD simulations demonstrate the material's thermal stability at elevated temperatures, while phonon dispersions indicate its dynamical stability. Electronic band structure calculations show that the system is metallic. The analysis of optical properties reveals intense activity in the visible and UV regions, with pronounced anisotropy. A machine learning interatomic potentials model was developed for TH-GY and used to determine the mechanical behavior of the system, which exhibits Young's modulus ranging from 263 to 356 GPa, highlighting its flexibility. Classical reactive MD simulations elucidate the fracture behavior of TH-GY, revealing distinct fracture patterns and mechanical anisotropy.

2.
Biomolecules ; 14(7)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39062468

RESUMO

Exploring therapeutic options is crucial in the ongoing COVID-19 pandemic caused by SARS-CoV-2. Nirmatrelvir, which is a potent inhibitor that targets the SARS-CoV-2 Mpro, shows promise as an antiviral treatment. Additionally, Ivermectin, which is a broad-spectrum antiparasitic drug, has demonstrated effectiveness against the virus in laboratory settings. However, its clinical implications are still debated. Using computational methods, such as molecular docking and 100 ns molecular dynamics simulations, we investigated how Nirmatrelvir and Ivermectin interacted with SARS-CoV-2 Mpro(A). Calculations using density functional theory were instrumental in elucidating the behavior of isolated molecules, primarily by analyzing the frontier molecular orbitals. Our analysis revealed distinct binding patterns: Nirmatrelvir formed strong interactions with amino acids, like MET49, MET165, HIS41, HIS163, HIS164, PHE140, CYS145, GLU166, and ASN142, showing stable binding, with a root-mean-square deviation (RMSD) of around 2.0 Å. On the other hand, Ivermectin interacted with THR237, THR239, LEU271, LEU272, and LEU287, displaying an RMSD of 1.87 Å, indicating enduring interactions. Both ligands stabilized Mpro(A), with Ivermectin showing stability and persistent interactions despite forming fewer hydrogen bonds. These findings offer detailed insights into how Nirmatrelvir and Ivermectin bind to the SARS-CoV-2 main protease, providing valuable information for potential therapeutic strategies against COVID-19.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus , Ivermectina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , SARS-CoV-2 , Ivermectina/química , Ivermectina/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Humanos , Antivirais/química , Antivirais/farmacologia , Ligação Proteica , Sulfonamidas/química , Sulfonamidas/farmacologia , Sítios de Ligação , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Lactamas , Leucina , Nitrilas , Prolina
3.
Front Hum Neurosci ; 15: 750591, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111004

RESUMO

Automatized scalable healthcare support solutions allow real-time 24/7 health monitoring of patients, prioritizing medical treatment according to health conditions, reducing medical appointments in clinics and hospitals, and enabling easy exchange of information among healthcare professionals. With recent health safety guidelines due to the COVID-19 pandemic, protecting the elderly has become imperative. However, state-of-the-art health wearable device platforms present limitations in hardware, parameter estimation algorithms, and software architecture. This paper proposes a complete framework for health systems composed of multi-sensor wearable health devices (MWHD), high-resolution parameter estimation, and real-time monitoring applications. The framework is appropriate for real-time monitoring of elderly patients' health without physical contact with healthcare professionals, maintaining safety standards. The hardware includes sensors for monitoring steps, pulse oximetry, heart rate (HR), and temperature using low-power wireless communication. In terms of parameter estimation, the embedded circuit uses high-resolution signal processing algorithms that result in an improved measure of the HR. The proposed high-resolution signal processing-based approach outperforms state-of-the-art HR estimation measurements using the photoplethysmography (PPG) sensor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA