Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood Adv ; 4(18): 4538-4549, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32956453

RESUMO

B-cell maturation antigen (BCMA), a member of the tumor necrosis factor family of receptors, is predominantly expressed on the surface of terminally differentiated B cells. BCMA is highly expressed on plasmablasts and plasma cells from multiple myeloma (MM) patient samples. We developed a BCMAxCD3 bispecific antibody (teclistamab [JNJ-64007957]) to recruit and activate T cells to kill BCMA-expressing MM cells. Teclistamab induced cytotoxicity of BCMA+ MM cell lines in vitro (H929 cells, 50% effective concentration [EC50] = 0.15 nM; MM.1R cells, EC50 = 0.06 nM; RPMI 8226 cells, EC50 = 0.45 nM) with concomitant T-cell activation (H929 cells, EC50 = 0.21 nM; MM.1R cells, EC50 = 0.1 nM; RPMI 8226 cells, EC50 = 0.28 nM) and cytokine release. This activity was further increased in the presence of a γ-secretase inhibitor (LY-411575). Teclistamab also depleted BCMA+ cells in bone marrow samples from MM patients in an ex vivo assay with an average EC50 value of 1.7 nM. Under more physiological conditions using healthy human whole blood, teclistamab mediated dose-dependent lysis of H929 cells and activation of T cells. Antitumor activity of teclistamab was also observed in 2 BCMA+ MM murine xenograft models inoculated with human T cells (tumor inhibition with H929 model and tumor regression with the RPMI 8226 model) compared with vehicle and antibody controls. The specific and potent activity of teclistamab against BCMA-expressing cells from MM cell lines, patient samples, and MM xenograft models warrant further evaluation of this bispecific antibody for the treatment of MM. Phase 1 clinical trials (monotherapy, #NCT03145181; combination therapy, #NCT04108195) are ongoing for patients with relapsed/refractory MM.


Assuntos
Anticorpos Biespecíficos , Mieloma Múltiplo , Animais , Anticorpos Biespecíficos/farmacologia , Antígeno de Maturação de Linfócitos B , Humanos , Ativação Linfocitária , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Linfócitos T
2.
Blood Adv ; 4(5): 906-919, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32150609

RESUMO

CD33 is expressed in 90% of patients with acute myeloid leukemia (AML), and its extracellular portion consists of a V domain and a C2 domain. A recent study showed that a single nucleotide polymorphism (SNP), rs12459419 (C > T), results in the reduced expression of V domain-containing CD33 and limited efficacy of V domain-binding anti-CD33 antibodies. We developed JNJ-67571244, a novel human bispecific antibody capable of binding to the C2 domain of CD33 and to CD3, to induce T-cell recruitment and CD33+ tumor cell cytotoxicity independently of their SNP genotype status. JNJ-67571244 specifically binds to CD33-expressing target cells and induces cytotoxicity of CD33+ AML cell lines in vitro along with T-cell activation and cytokine release. JNJ-67571244 also exhibited statistically significant antitumor activity in vivo in established disseminated and subcutaneous mouse models of human AML. Furthermore, this antibody depletes CD33+ blasts in AML patient blood samples with concurrent T-cell activation. JNJ-67571244 also cross-reacts with cynomolgus monkey CD33 and CD3, and dosing of JNJ-67571244 in cynomolgus monkeys resulted in T-cell activation, transient cytokine release, and sustained reduction in CD33+ leukocyte populations. JNJ-67571244 was well tolerated in cynomolgus monkeys up to 30 mg/kg. Lastly, JNJ-67571244 mediated efficient cytotoxicity of cell lines and primary samples regardless of their SNP genotype status, suggesting a potential therapeutic benefit over other V-binding antibodies. JNJ-67571244 is currently in phase 1 clinical trials in patients with relapsed/refractory AML and high-risk myelodysplastic syndrome.


Assuntos
Leucemia Mieloide Aguda , Linfócitos T , Animais , Domínios C2 , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Macaca fascicularis , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Linfócitos T/metabolismo
3.
Blood ; 135(15): 1232-1243, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32040549

RESUMO

T-cell-mediated approaches have shown promise in myeloma treatment. However, there are currently a limited number of specific myeloma antigens that can be targeted, and multiple myeloma (MM) remains an incurable disease. G-protein-coupled receptor class 5 member D (GPRC5D) is expressed in MM and smoldering MM patient plasma cells. Here, we demonstrate that GPRC5D protein is present on the surface of MM cells and describe JNJ-64407564, a GPRC5DxCD3 bispecific antibody that recruits CD3+ T cells to GPRC5D+ MM cells and induces killing of GPRC5D+ cells. In vitro, JNJ-64407564 induced specific cytotoxicity of GPRC5D+ cells with concomitant T-cell activation and also killed plasma cells in MM patient samples ex vivo. JNJ-64407564 can recruit T cells and induce tumor regression in GPRC5D+ MM murine models, which coincide with T-cell infiltration at the tumor site. This antibody is also able to induce cytotoxicity of patient primary MM cells from bone marrow, which is the natural site of this disease. GPRC5D is a promising surface antigen for MM immunotherapy, and JNJ-64407564 is currently being evaluated in a phase 1 clinical trial in patients with relapsed or refractory MM (NCT03399799).


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Mieloma Múltiplo/terapia , Receptores Acoplados a Proteínas G/imunologia , Linfócitos T/efeitos dos fármacos , Animais , Anticorpos Biespecíficos/imunologia , Antineoplásicos Imunológicos/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica/efeitos dos fármacos , Feminino , Humanos , Imunoterapia , Camundongos Endogâmicos BALB C , Mieloma Múltiplo/imunologia , Linfócitos T/imunologia
4.
J Immunol ; 202(5): 1340-1349, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30700590

RESUMO

CD4+ T cells play critical roles in defending against poxviruses, both by potentiating cellular and humoral responses and by directly killing infected cells. Despite this central role, the basis for pox-specific CD4+ T cell activation, specifically the origin of the poxvirus-derived peptides (epitopes) that activate CD4+ T cells, remains poorly understood. In addition, because the current licensed poxvirus vaccines can cause serious adverse events and even death, elucidating the requirements for MHC class II (MHC-II) processing and presentation of poxviral Ags could be of great use. To address these questions, we explored the CD4+ T cell immunogenicity of ectromelia, the causative agent of mousepox. Having identified a large panel of novel epitopes via a screen of algorithm-selected synthetic peptides, we observed that immunization of mice with inactivated poxvirus primes a virtually undetectable CD4+ T cell response, even when adjuvanted, and is unable to provide protection against disease after a secondary challenge. We postulated that an important contributor to this outcome is the poor processability of whole virions for MHC-II-restricted presentation. In line with this hypothesis, we observed that whole poxvirions are very inefficiently converted into MHC-II-binding peptides by the APC as compared with subviral material. Thus, stability of the virion structure is a critical consideration in the rational design of a safe alternative to the existing live smallpox vaccine.


Assuntos
Apresentação de Antígeno/imunologia , Linfócitos T CD4-Positivos/imunologia , Imunogenicidade da Vacina/imunologia , Poxviridae/imunologia , Vacinas de Produtos Inativados/imunologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL
5.
Nat Med ; 21(10): 1216-22, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26413780

RESUMO

By convention, CD4+ T lymphocytes recognize foreign and self peptides derived from internalized antigens in combination with major histocompatibility complex class II molecules. Alternative pathways of epitope production have been identified, but their contributions to host defense have not been established. We show here in a mouse infection model that the CD4+ T cell response to influenza, critical for durable protection from the virus, is driven principally by unconventional processing of antigen synthesized within the infected antigen-presenting cell, not by classical processing of endocytosed virions or material from infected cells. Investigation of the cellular components involved, including the H2-M molecular chaperone, the proteasome and γ-interferon-inducible lysosomal thiol reductase revealed considerable heterogeneity in the generation of individual epitopes, an arrangement that ensures peptide diversity and broad CD4+ T cell engagement. These results could fundamentally revise strategies for rational vaccine design and may lead to key insights into the induction of autoimmune and anti-tumor responses.


Assuntos
Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Influenza Humana/imunologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Vírion/imunologia
6.
Methods Mol Biol ; 919: 259-71, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22976107

RESUMO

Immunoaffinity capillary electrophoresis (ICE) is a powerful tool used to detect and quantify target proteins of interest in complex biological fluids. The target analyte is captured and bound to antibodies immobilized onto the wall of a capillary, labeled in situ with a fluorescent dye, eluted and detected online using laser-induced fluorescence following electrophoretic separation. Here, we illustrate how to construct an immunoaffinity capillary and utilize it to run ICE in order to capture and quantify target cytokines and chemokines from a clinical sample.


Assuntos
Cromatografia de Afinidade/métodos , Citocinas/análise , Eletroforese Capilar/métodos , Anticorpos/imunologia , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Proteínas Recombinantes/análise , Padrões de Referência , Compostos de Sulfidrila/química , Fator de Necrose Tumoral alfa/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA