Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Acta Trop ; 205: 105350, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31962096

RESUMO

Schistosomiasis is one of the most important parasitic infections in terms of its negative effects on public health and economics. Since praziquantel is currently the only drug available to treat schistosomiasis, there is an urgent need to identify new anthelmintic agents. Piplartine, also known as piperlongumine, is a biologically active alkaloid/amide from peppers that can be detected in high amounts in the roots of Piper tuberculatum. Previously, it has been shown to have in vitro schistosomicidal effects. However, its anthelmintic activity in an animal host has not been reported. In the present work, in vivo antischistosomal properties of isolated piplartine were evaluated in a mouse model of schistosomiasis infected with either adult (patent infection) or juvenile (pre-patent infection) stages of Schistosoma mansoni. A single dose of piplartine (100, 200 or 400 mg/kg) or daily doses for five consecutive days (100 mg/kg/day) administered orally to mice infected with schistosomes resulted in a reduction in worm burden and egg production. Treatment with the highest piplartine dose (400 mg/kg) caused a significant reduction in a total worm burden of 60.4% (P < 0.001) in mice harbouring adult parasites. S. mansoni egg production, a process responsible for pathology in schistosomiasis, was also significantly inhibited by piplartine. Studies using scanning electron microscopy revealed substantial tegumental alterations in parasites recovered from mice. Since piplartine has well-characterized mechanisms of toxicity, is easily available, and is cost-effective, our results indicate that this bioactive molecule derived from medicinal plants could be a potential lead compound for novel antischistosomal agents.


Assuntos
Piperidonas/uso terapêutico , Esquistossomose mansoni/tratamento farmacológico , Esquistossomicidas/uso terapêutico , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Piper/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-30275819

RESUMO

BACKGROUND: The therapeutic arsenal for the treatment of Leishmaniasis is limited and includes toxic compounds (antimonials, amphotericin B, pentamidine and miltefosine). Given these aspects, the search for new compounds based on floristic biodiversity is crucial. In the present work, we report the isolation, characterization and antileishmanial activity of six related neolignans (1-6) of bioactive extract from Nectandra leucantha (Lauraceae) twigs. METHODS: Dried and powdered twigs of N. leucantha were exhaustively extracted using n-hexane. The crude extract was dereplicated by HPLC/HRESIMS and subjected to column chromatography to yield pure compounds 1-6. Their chemical structures were identified via NMR and comparison of obtained data with those previously published in the literature. Biological assays of compounds 1-6 and their respective monomers (eugenol and methyleugenol) were performed using promastigote and amastigote forms of Leishmania (L.) infantum. RESULTS: Dereplication procedures followed by chemical characterization of isolated compounds by NMR enabled the identification of related neolignans 1-6. Neolignans 2, 4 and 6 showed potential against amastigote forms of L. (L.) infantum (EC50 values of 57.9, 67.7 and 13.7 µM, respectively), while compounds 1 and 3 were inactive. As neolignans 2-4 are chemically related, it may be suggested that the presence of the methoxyl group at C4 constitutes an important structural aspect to increase antileishmanial potential against amastigote forms. Compound 6, which consists of a methylated derivative of compound 5 (inactive) showed antileishmanial activity similar to that of the standard drug miltefosine (EC50 = 16.9 µM) but with reduced toxicity (SI = 14.6 and 7.2, respectively). Finally, two related monomers, eugenol and methyleugenol, were also tested and did not display activity, suggesting that the formation of dimeric compounds by oxidative coupling is crucial for antiparasitic activity of dimeric compounds 2, 4 and 6. CONCLUSION: This study highlights compound 6 against L. (L.) infantum amastigotes as a scaffold for future design of new compounds for drug treatment of visceral leishmaniasis.

3.
J. venom. anim. toxins incl. trop. dis ; 24: 27, 2018. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-976023

RESUMO

The therapeutic arsenal for the treatment of Leishmaniasis is limited and includes toxic compounds (antimonials, amphotericin B, pentamidine and miltefosine). Given these aspects, the search for new compounds based on floristic biodiversity is crucial. In the present work, we report the isolation, characterization and antileishmanial activity of six related neolignans (1­6) of bioactive extract from Nectandra leucantha (Lauraceae) twigs. Methods: Dried and powdered twigs of N. leucantha were exhaustively extracted using n-hexane. The crude extract was dereplicated by HPLC/HRESIMS and subjected to column chromatography to yield pure compounds 1­6. Their chemical structures were identified via NMR and comparison of obtained data with those previously published in the literature. Biological assays of compounds 1­6 and their respective monomers (eugenol and methyleugenol) were performed using promastigote and amastigote forms of Leishmania (L.) infantum. Results: Dereplication procedures followed by chemical characterization of isolated compounds by NMR enabled the identification of related neolignans 1­6. Neolignans 2, 4 and 6 showed potential against amastigote forms of L. (L.) infantum (EC50 values of 57.9, 67.7 and 13.7 µM, respectively), while compounds 1 and 3 were inactive. As neolignans 2­4 are chemically related, it may be suggested that the presence of the methoxyl group at C4 constitutes an important structural aspect to increase antileishmanial potential against amastigote forms. Compound 6, which consists of a methylated derivative of compound 5 (inactive) showed antileishmanial activity similar to that of the standard drug miltefosine (EC50 =16.9 µM) but with reduced toxicity (SI = 14.6 and 7.2, respectively). Finally, two related monomers, eugenol and methyleugenol, were also tested and did not display activity, suggesting that the formation of dimeric compounds by oxidative coupling is crucial for antiparasitic activity of dimeric compounds 2, 4 and 6. Conclusion: This study highlights compound 6 against L. (L.) infantum amastigotes as a scaffold for future design of new compounds for drug treatment of visceral leishmaniasis.(AU)


Assuntos
Bioensaio , Técnicas In Vitro , Lauraceae , Biodiversidade , Leishmania , Antiparasitários , Cromatografia Líquida de Alta Pressão , Lignanas/isolamento & purificação , Acoplamento Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA