Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Photochem Photobiol ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594817

RESUMO

Staphylococcus aureus is a global challenge to the clinical field and food industry. Therefore, the development of antimicrobial photodynamic therapy (aPDT) has become one of the valuable methods to control this pathogen. The antibacterial activity of photoinactivation by erythrosine (Ery) against S. aureus has been reported, but its modes of action are unclear. This study aimed to employ a proteomic approach to analyze modes of action of Ery-aPDT against S. aureus. We determined the antibacterial effect by Ery-aPDT assays, quantified reactive oxygen species (ROS) and injury to the cell membrane, and determined protein expression using a proteomic approach combined with bioinformatic tools. Ery-aPDT was effective in reducing S. aureus to undetectable levels. In addition, the increment of ROS accompanied the increase in the reduction of cell viability, and damage to cellular membranes was shown by sublethal injury. In proteomic analysis, we found 17 differentially expressed proteins. These proteins revealed changes mainly associated with defense to oxidative stress, energy metabolism, translation, and protein biosynthesis. Thus, these results suggest that the effectiveness of Ery-aPDT is due to multi-targets in the bacterial cell that cause the death of S. aureus.

2.
Lett Appl Microbiol ; 77(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38070878

RESUMO

Staphylococcus aureus is one of the main etiological agents causing foodborne diseases, and the development of new antibacterial agents is urgent. This study evaluated the antibacterial activity and the possible mechanism of action of the 1,3,4-oxadiazole LMM6 against S. aureus. The minimum inhibitory concentration (MIC) of LMM6 ranged from 1.95 to 7.81 µg ml-1. The time-kill assay showed that 48-h treatment at 1× to 8× MIC reduced S. aureus by 4 log colony forming unit (CFU), indicating a bacteriostatic effect. Regarding the possible mechanism of action of LMM6, there was accumulation of reactive oxygen species (ROS) and an increase in the absorption of crystal violet (∼50%) by the cells treated with LMM6 at 1× and 2× MIC for 6-12 h. In addition, there was increased propidium iodide uptake (∼84%) after exposure to LMM6 for 12 h at 2× MIC. After 48 h of treatment, 100% of bacteria had been injured. Scanning electron microscopy observations demonstrated that LMM6-treated cells were smaller compared with the untreated group. LMM6 exhibited bacteriostatic activity and its mechanism of action involves increase of intracellular ROS and disturbance of the cell membrane, which can be considered a key target for controlling the growth of S. aureus.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Espécies Reativas de Oxigênio , Antibacterianos/farmacologia , Oxidiazóis/farmacologia , Testes de Sensibilidade Microbiana
3.
Anticancer Agents Med Chem ; 24(2): 117-124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37957873

RESUMO

BACKGROUND: Breast cancer is the most commonly diagnosed cancer among women worldwide with limited treatment options. Artepillin C (3,5-diprenyl-4-hydroxycinnamic acid) is one of the main constituents of Brazilian propolis presenting different activities, including antitumoral effects against various types of cancer. OBJECTIVE: We evaluated the antitumoral potential and mechanisms of action of artepillin C against two distinct human breast cancer cell lines, MCF-7 and MDA-MB-231, to explore a new therapeutic candidate. METHODS: Cell viability was assessed by MTT assay and the long-term cytotoxicity was performed by clonogenic assay. The morphological changes were observed by light microscopy, analysis of cell death pathway by Annexin V FITC/propidium iodide (PI), lactate dehydrogenase (LDH) by colorimetry, DNA fragmentation by agarose gel and senescence by ß-galactosidase. Detection of total reactive oxygen species (ROS) by fluorescence microscopy and determination of mitochondrial transmembrane potential by flow cytometry were also performed. RESULTS: Artepillin C presented a strong and dose-time-dependent cytotoxic effect on MCF-7 and MDA-MB-231 cell lines, with cytotoxicity more evident in MCF-7. In both cancer cell lines, the clonogenic potential was significantly reduced and the morphology of the cells was changed. The treatment also induced death by necrosis and late apoptosis in MCF-7 and MDA-MB-231 and induced cell senescence in MCF-7. Also, artepillin C increased total ROS in both cancer cells and decreased mitochondrial membrane potential in MDA-MB-231 cells. CONCLUSION: Artepillin C presented antitumoral potential in two human breast cancer cell lines, MCF-7, and MDA-MB-231, suggesting a new promising option for the treatment and/or chemopreventive strategy for breast cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Fenilpropionatos , Própole , Humanos , Feminino , Células MCF-7 , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Própole/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Brasil , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células
4.
Microb Pathog ; 185: 106437, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37913825

RESUMO

BACKGROUND: Our previous proteomics data obtained from Candida albicans recovered after serial passage in a murine model of systemic infection revealed that Orf19.36.1 expression correlates with the virulence of the fungus. Therefore, the impact of ORF19.36.1 upon virulence was tested in this study. MATERIALS & METHODS: CRISPR-Cas9 technology was used to construct homozygous C. albicans orf19.36.1 null mutants and the phenotypes of these mutants examined in vitro (filamentation, invasion, adhesion, biofilm formation, hydrolase activities) and in vivo assays. RESULTS: The deletion of ORF19.36.1 did not significantly impact the phenotypes examined or the virulence of C. albicans in two infection models. CONCLUSION: These results suggest that, although Orf19.36.1 expression correlates with virulence, this protein is not essential for C. albicans pathobiology.


Assuntos
Candida albicans , Candidíase , Proteínas Fúngicas , Animais , Camundongos , Candidíase/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Virulência/genética
5.
Photodiagnosis Photodyn Ther ; 44: 103875, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37923285

RESUMO

INTRODUCTION: The Trichophyton rubrum complex comprises the majority of dermatophyte fungi (DM) responsible for chronic cases of onychomycosis, which is treated with oral or topical antifungals. However, owing to antifungal resistance, alternative therapies, such as photodynamic therapy (PDT), are needed. This study investigated the frequency of the T. rubrum species complex in onychomycosis cases in the northwestern region of Paraná state, Brazil, and evaluated the efficacy of (PDT) using P123-encapsulated hypericin (Hyp-P123) on clinical isolates of T. rubrum in the planktonic cell and biofilm forms. MATERIAL AND METHODS: The frequency of the T. rubrum complex in onychomycosis cases from 2017 to 2021 was evaluated through a data survey of records from the Laboratory of Medical Mycology (LEPAC) of the State University of Maringa (UEM). To determine the effect of PDT-Hyp-P123 on planktonic cells of T. rubrum isolates, 1 × 105 conidia/mL were treated with ten different concentrations of Hyp-P123 and then irradiated with 37.8 J/cm2. Antibiofilm activity of PDT-Hyp-P123 was tested against T. rubrum biofilm in the adhesion phase (3 h), evaluated 72 h after irradiation (37.8 J/cm2), and the mature biofilm (72 h), evaluated immediately after irradiation. In this context, three different parameters were evaluated: cell viability, metabolic activity and total biomass. RESULTS: The T. rubrum species complex was the most frequently isolated DM in onychomycosis cases (approximately 80 %). A significant reduction in fungal growth was observed for 75 % of the clinical isolates tested with a concentration from 0.19 µmol/L Hyp-P123, and 56.25 % had complete inhibition of fungal growth (fungicidal action); while all isolates were azole-resistant. The biofilm of T. rubrum isolates (TR0022 and TR0870) was inactivated in both the adhesion phase and the mature biofilm. CONCLUSION: PDT-Hyp-P123 had antifungal and antibiofilm activity on T. rubrum, which is an important dermatophyte responsible for onychomycosis cases.


Assuntos
Onicomicose , Fotoquimioterapia , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Onicomicose/tratamento farmacológico , Onicomicose/microbiologia , Fotoquimioterapia/métodos , Azóis/farmacologia , Azóis/uso terapêutico , Trichophyton , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Biofilmes
6.
PeerJ ; 11: e15973, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780387

RESUMO

Previous studies about the genetic diversity, connectivity and demographic history in Lutjanidae fishes have reported a common pattern of genetic homogeneity and expansion in populations from Western South Atlantic. In the present work, we inferred the population structure, the levels of genetic diversity and the demographic history of the Brazilian snapper Lutjanus alexandrei, a recently described and endemic species from Northeastern coast of Brazil. Five different fragments, including mitochondrial DNA (Control Region, Cyt b and ND4) and nuclear DNA (Myostatin and S7) regions were analyzed in 120 specimens of L. alexandrei from four localities in Northeastern Brazil, representing the first study of population genetics in this species. High levels of genetic diversity were observed following a panmictic pattern, probably related to the larval dispersal by the current tides along the Brazilian coast. In addition, both demographic history and neutrality tests indicated that L. alexandrei has undergone population expansion during Pleistocene. In this sense, the sea level variation from this period could have increased the available resources and suitable habitats for the Brazilian snapper.


Assuntos
Peixes , Perciformes , Animais , Brasil/epidemiologia , Peixes/genética , Perciformes/genética , Genética Populacional , DNA Mitocondrial/genética
7.
Polymers (Basel) ; 15(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37896321

RESUMO

The addition of toxic flame retardants to commercially available polymers is often required for safety reasons due to the high flammability of these materials. In this work, the preparation and incorporation of efficient biodegradable starch-based flame retardants into a low-density polyethylene (LDPE) matrix was investigated. Thermoplastic starch was first obtained by plasticizing starch with glycerol/water or glycerol/water/choline phytate to obtain TPS-G and TPS-G-CPA, respectively. Various LDPE/TPS blends were prepared by means of melt blending using polyethylene graft maleic anhydride as a compatibilizer and by varying the content of TPS and a halogenated commercial flame retardant. By replacing 38% and 76% of the harmful commercial flame retardant with safe TPS-G-CPA and TPS-G, respectively, blends with promising fire behavior were obtained, while the limiting oxygen index (LOI ≈ 28%) remained the same. The presence of choline phytate improved both the charring ability and fire retardancy of starch and resulted in a 43% reduction in fire growth index compared to the blend with commercial flame retardant only, as confirmed by means of cone calorimetry. Standard UL 94 vertical tests showed that blends containing TPS exhibited dripping behavior (rated V2), while those with commercial flame retardant were rated V0. Overall, this work demonstrates the potential of starch as a natural flame retardant that could reduce the cost and increase the safety of polymer-based materials.

8.
Future Microbiol ; 18: 1137-1146, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37830930

RESUMO

Aim: This study evaluated the antifungal efficacy of gentian violet (GV) in an experimental vulvovaginal candidiasis (VVC) model. Materials & methods: In vitro susceptibility and cytotoxicity assays were performed to validate the antifungal potential and safety of GV. The antifungal efficacy was then evaluated in vivo through comparative analysis of the fungal burden following treatment with GV or nystatin, as well as assessment of the vaginal tissue by histology and electron microscopy. Results: GV demonstrated a safe antifungal profile against C. albicans, with a significant decrease in fungal burden and an improvement in the inflammatory process evaluated histologically. Conclusion: The results of this study motivate further assessment of GV as a promising alternative for VVC therapy.


Assuntos
Candidíase Vulvovaginal , Feminino , Humanos , Camundongos , Animais , Candidíase Vulvovaginal/tratamento farmacológico , Candidíase Vulvovaginal/microbiologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Violeta Genciana/uso terapêutico , Candida albicans , Nistatina/farmacologia , Nistatina/uso terapêutico
9.
Molecules ; 28(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37764312

RESUMO

The absence of progesterone receptors, estrogen receptors, and human epidermal growth factor receptor-2 restricts the therapy choices for treating triple-negative breast cancer (TNBC). Moreover, conventional medication is not highly effective in treating TNBC, and developing effective therapeutic agents from natural bioactive compounds is a viable option. In this study, the anticancer effects of the natural compound fucoxanthin were investigated in two genetically different models of TNBC cells: MDA-MB-231 and MDA-MB-468 cells. Fucoxanthin had a significant anticancer effect in both cell lines at a concentration range of 1.56-300 µM. The compound decreased cell viability in both cell lines with higher potency in MDA-MB-468 cells. Meanwhile, proliferation assays showed similar antiproliferative effects in both cell lines after 48 h and 72 h treatment periods. Flow cytometry and Annexin V-FITC apoptosis assay revealed the ability of fucoxanthin to induce apoptosis in MDA-MB-231 only. Cell cycle arrest analysis showed that the compound also induced cell cycle arrest at the G1 phase in both cell lines, accompanied by more cell cycle arrest in MDA-MB-231 cells at S-phase and a higher cell cycle arrest in the MDA-MB-468 cells at G2-phase. Wound healing and migration assay showed that in both cell lines, fucoxanthin prevented migration, but was more effective in MDA-MB-231 cells in a shorter time. In both angiogenic cytokine array and RT-PCR studies, fucoxanthin (6.25 µM) downregulated VEGF-A and -C expression in TNF-α-stimulated (50 ng/mL) MDA-MB-231, but not in MDA-MB-468 cells on the transcription and protein levels. In conclusion, this study shows that fucoxanthin was more effective in MDA-MB-231 TNBC cells, where it can target VEGF-A and VEGF-C, inhibit cell proliferation and cell migration, and induce cell cycle arrest and apoptosis-the most crucial cellular processes involved in breast cancer development and progression.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/genética , Pontos de Checagem do Ciclo Celular , Apoptose
10.
Brain Sci ; 13(8)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37626501

RESUMO

Alzheimer's disease is a progressive neurodegenerative disorder leading to cognitive decline and memory loss. The incidence of this disease continues to increase due to the limited number of novel therapeutics that prevent or slow down its progression. Flavonoids have been investigated for their potential effects on cellular damage triggered by excessive reactive oxygen species (ROS) and neuroinflammatory conditions. This study investigated the effect of the flavonoid hesperetin on LPS-activated murine BV-2 microglial cells. Results show that hesperetin reduced nitric oxide levels and increased catalase, glutathione, and superoxide dismutase levels, suggesting its potential to reduce neuroinflammation and oxidative stress. Moreover, RT-PCR arrays showed that hesperetin modulated multiple genes that regulate oxidative stress. Hesperetin downregulated the mRNA expression of ERCC6, NOS2, and NCF1 and upregulated HMOX1 and GCLC. RT-PCR results showed that hesperetin-induced Nrf2 mRNA and protein expression in LPS-activated BV-2 microglial cells is involved in the transcription of several antioxidant genes, suggesting that hesperetin's antioxidant effects may be exerted via the Keap1/Nrf2 signaling pathway. Furthermore, the data demonstrated that hesperetin reduced the gene expression of PD-L1, which is upregulated as an individual ages and during chronic inflammatory processes, and inhibited the expression of genes associated with NF-kB signaling activation, which is overactivated during chronic inflammation. It was concluded from this investigation that hesperetin may have therapeutic potential to prevent or slow down the progression of neurodegenerative diseases, such as Alzheimer's disease, by reducing chronic oxidative stress and modulating neuroinflammation.

11.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446045

RESUMO

Chronic oxidative stress (OS) and inflammation are implicated in developing and progressing neurodegenerative diseases (NDs). The chronic activation of microglia cells leads to the overproduction of several substances, including nitric oxide and reactive oxygen species, which can induce neurodegeneration. Natural compounds have recently been investigated for their potential to protect cells from OS and to improve many disease-related conditions. Cardamonin (CD) is a bioactive compound in many plants, such as Alpinia katsumadai and Alpinia conchigera. The present study examined the effects of CD on LPS-activated BV-2 microglial cells. The cell viability results showed that the increasing concentrations of CD, ranging from 0.78 to 200 µM, induced BV-2 cell cytotoxicity in a dose-response manner. In the nitric oxide assay, CD concentrations of 6.25 to 25 µM reduced the release of nitric oxide in LPS-activated BV-2 cells by 90% compared to those treated with LPS only (p ≤ 0.0001). CD (6.25 µM) significantly decreased the cellular production of SOD (3-fold (p ≤ 0.05)) and increased the levels of expression of CAT (2.5-fold (p ≤ 0.05)) and GSH (2-fold (p ≤ 0.05)) in the LPS-activated BV-2 cells. Furthermore, on RT-PCR arrays, CD (6.25 µM) downregulated mRNA expression of CCL5/RANTES (5-fold), NOS2 (2-fold), SLC38A1 (3-fold), TXNIP (2-fold), SOD1 (2-fold), SOD2 (1.5-fold) and upregulated GSS (1.9-fold), GCLC (1.7-fold) and catalase (2.9-fold) expression, indicating CD efficacy in modulating genes involved in OS and inflammation. Furthermore, CD (6.25 µM) increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and lowered the levels of Kelch-like ECH-associated protein 1 (Keap1), indicating that this may be the signaling responsible for the elevation of antioxidant factors. Lastly, the results showed that CD (6.25 µM) modulated genes and proteins associated with the NF-kB signaling, downregulating genes related to excessive neuroinflammation. These results imply that CD may be a potential compound for developing therapeutic and preventive agents in treating neurodegeneration induced by excessive OS and inflammation.


Assuntos
Antioxidantes , NF-kappa B , Humanos , NF-kappa B/metabolismo , Antioxidantes/metabolismo , Microglia/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Óxido Nítrico/metabolismo , Linhagem Celular , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo
12.
Photodiagnosis Photodyn Ther ; 43: 103659, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37336466

RESUMO

BACKGROUND: Sporothrix brasiliensis is a pathogenic dimorphic fungus that affects humans and animals causing sporotrichosis. The treatment of this disease with conventional antifungals commonly results in therapeutic failures and resistance. Therefore, this study aimed to evaluate the in vitro effect of curcumin (CUR) mediated by photodynamic therapy (PDT) in its pure state and incorporated into pharmaceutical formulation in gel form, on the filamentous and yeast forms of S. brasiliensis. METHODS: Cells from both forms of the fungus were treated with pure curcumin (PDT-CUR). For this, CUR concentrations ranging from 0.09 to 50 µM were incubated for 15 min and then irradiated with blue LED at 15 J/cm². Similarly, it was performed with PDT-CUR-gel, at lower concentration with fungistatic action. After, a qualitative and quantitative (colony forming units (CFU)) analysis of the results was performed. Additionally, reactive oxygen species (ROS) were detected by flow cytometry. Results PDT with 0.78 µM of CUR caused a significant reduction (p < 0.05) in cells of the filamentous and yeast form, 1.38 log10 and 1.18 log10, respectively, in comparison with the control. From the concentration of 1.56 µM of CUR, there was a total reduction in the number of CFU (≥ 3 log10). The PDT-CUR-gel, in relation to its base without CUR, presented a significant reduction (p < 0.05) of 0.83 log10 for the filamentous form and for the yeast form, 0.72 log10. ROS release was detected after the PDT-CUR assay, showing that this may be an important pathway of death caused by photoinactivation. Conclusion PDT-CUR has an important in vitro antifungal action against S. brasiliensis strains in both morphologies.


Assuntos
Curcumina , Fotoquimioterapia , Humanos , Animais , Antifúngicos/uso terapêutico , Curcumina/farmacologia , Curcumina/uso terapêutico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Saccharomyces cerevisiae , Espécies Reativas de Oxigênio
13.
Future Microbiol ; 18: 357-371, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37166186

RESUMO

Aim: To investigate the antifungal potential of Macrocybe titans extracts against Candida albicans. Material & methods: Extracts were obtained as aqueous (EfraMat-22 and EfraMat-45) and methanolic/ethyl acetate fractions. Results: Broth microdilution and disk diffusion assays showed that EfraMat-45 provided the best results in terms of minimum inhibitory concentration. Scanning electron microscopy analysis revealed morphological changes and slight damage on the surfaces of cells exposed to EfraMat-45 at the MIC. Fluorescence microscopy analysis of the yeasts showed cell elongation. EfraMat-45 presented high levels of phenolic compounds and flavonoids, high antioxidant activity and absence of in vitro cytotoxicity. Conclusion: The results indicated that the aqueous extract of M. titans is highly promising as an antifungal agent.


Assuntos
Agaricales , Antifúngicos , Antifúngicos/farmacologia , Candida albicans , Extratos Vegetais/farmacologia , Testes de Sensibilidade Microbiana , Água
14.
Anticancer Res ; 43(6): 2393-2405, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37247921

RESUMO

BACKGROUND/AIM: Diallyl trisulfide (DATS) has been shown to prevent and inhibit carcinogenesis in cancer cells. We have previously shown DATS's ability to decrease the percentage of viable cells, inhibit cell migration and modulate genes involved in the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-B) and mitogen-activated protein kinase (MAPK) signaling. MATERIALS AND METHODS: This study aimed to compare the efficacy of DATS in tumor necrosis factor alpha (TNF-α) induced MDA-MB-231 and MDA-MB-468 cells and investigate its role in cell-death signaling via cell cycle, flow cytometry, and caspase assay. RESULTS: DATS exhibit a time-dependent accumulation of G2/M phase cells in both cell lines, with higher effects in the MDA-MB-468 for all time points. DATS's ability to decrease the percentage of viable cells in both MDA-MB-231 and MDA-MB-468 cells was shown by a significant but slight increase of early and late apoptosis in the presence of DATS compared to control. Moreover, MDA-MB-468 cells showed more sensitivity to the DATS effect, evidenced by the higher percentage of apoptosis than MDA-MB-231 cells. The caspase studies showed a significant increase in caspase 3 and 8 activity in the presence of DATS, compared to control, in both cell lines. DATS showed no significant increase in caspase 9 activity in both cell lines compared to the control. CONCLUSION: DATS-induced apoptosis in human breast cancer cells is mediated, at least in part, by cell cycle arrest and caspase activity. These findings provide information for future studies into the role of DATS in TNBC therapy and prevention.


Assuntos
Compostos Alílicos , Neoplasias de Mama Triplo Negativas , Humanos , Fator de Necrose Tumoral alfa/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Linhagem Celular Tumoral , Sulfetos/farmacologia , Apoptose , Compostos Alílicos/farmacologia , Caspases
15.
Photodiagnosis Photodyn Ther ; 42: 103498, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36882144

RESUMO

BACKGROUND: Onychomycosis (OM) is a common nail plate disorder caused by dermatophyte molds, yeasts, and non-dermatophyte molds, which use keratin in the nail plate as an energy source. OM is characterized by dyschromia, increased nail thickness, subungual hyperkeratosis, and onychodystrophy, and is typically treated with conventional antifungals despite frequent reports of toxicity, fungal resistance, and OM recurrence. Photodynamic therapy (PDT) with hypericin (Hyp) as a photosensitizer (PS) stands out as a promising therapeutic modality. When excited by a specific wavelength of light and in the presence of oxygen, to lead to photochemical and photobiological reactions on the selected targets. METHODS: OM diagnosis was made in three suspected cases, and the causative agents were identified by classical and molecular methods, and confirmed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). Susceptibility of planktonic cells of the clinical isolates to conventional antifungals and PDT-Hyp was evaluated, and photoacoustic spectroscopy (PAS) of Hyp permeation in nail fragments ex vivo was analyzed. Furthermore, the patients opted to undergo PDT-Hyp treatment and were subsequently followed up. The protocol was approved by the human ethics committee (CAAE, number 14107419.4.0000.0104). RESULTS: The etiological agents of OM in patients ID 01 and ID 02 belonged to the Fusarium solani species complex, being identified as Fusarium keratoplasticum (CMRP 5514) and Fusarium solani (CMRP 5515), respectively. For patient ID 03, the OM agent was identified as Trichophyton rubrum (CMRP 5516). PDT-Hyp demonstrated a fungicidal effect in vitro, with reductions of p3 log10 (p < 0.0051 and p < 0.0001), and the PAS analyses indicated that Hyp could completely permeate through both healthy and OM-affected nails. After four sessions of PDT-Hyp, mycological cure was observed in all three cases, and after seven months, clinical cure was confirmed. CONCLUSION: PDT-Hyp showed satisfactory results in terms of efficacy and safety, and thus can be considered a promising therapy for the clinical treatment of OM.


Assuntos
Doenças da Unha , Onicomicose , Fotoquimioterapia , Humanos , Onicomicose/tratamento farmacológico , Onicomicose/microbiologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Doenças da Unha/tratamento farmacológico
16.
Int J Pharm ; 637: 122865, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36940837

RESUMO

The chemosensitization of tumor cells by gene therapy represents a promising strategy for hepatocellular carcinoma (HCC) treatment. In this regard, HCC-specific and highly efficient gene delivery nanocarriers are urgently needed. For this purpose, novel lactobionic acid-based gene delivery nanosystems were developed to downregulate c-MYC expression and sensitize tumor cells to low concentration of sorafenib (SF). A library of tailor-made cationic glycopolymers, based on poly(2-aminoethyl methacrylate hydrochloride) (PAMA) and poly(2-lactobionamidoethyl methacrylate) (PLAMA) were synthesized by a straightforward activators regenerated by electron transfer atom transfer radical polymerization. The nanocarriers prepared with PAMA114-co-PLAMA20 glycopolymer were the most efficient for gene delivery. These glycoplexes specifically bound to the asialoglycoprotein receptor and were internalized through the clathrin-coated pit endocytic pathway. c-MYC expression was significantly downregulated by MYC short-hairpin RNA (MYC shRNA), resulting in efficient inhibition of tumor cells proliferation and a high levels apoptosis in 2D and 3D HCC-tumor models. Moreover, c-MYC silencing increased the sensitivity of HCC cells to SF (IC50 for MYC shRNA + SF 1.9 µM compared to 6.9 µM for control shRNA + SF). Overall, the data obtained demonstrated the great potential of PAMA114-co-PLAMA20/MYC shRNA nanosystems combined with low doses of SF for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , RNA Interferente Pequeno/genética , Sorafenibe
17.
Biomacromolecules ; 24(3): 1274-1286, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36780314

RESUMO

Cationic glycopolymers stand out as gene delivery nanosystems due to their inherent biocompatibility and high binding affinity to the asialoglycoprotein receptor (ASGPR), a target receptor overexpressed in hepatocellular carcinoma (HCC) cells. However, their synthesis procedure remains laborious and complex, with problems of solubilization and the need for protection/deprotection steps. Here, a mini-library of well-defined poly(2-aminoethyl methacrylate hydrochloride-co-poly(2-lactobionamidoethyl methacrylate) (PAMA-co-PLAMA) glycopolymers was synthesized by activators regenerated by electron transfer (ARGET) ATRP to develop an efficient gene delivery nanosystem. The glycoplexes generated had suitable physicochemical properties and showed high ASGPR specificity and high transfection efficiency. Moreover, the HSV-TK/GCV suicide gene therapy strategy, mediated by PAMA144-co-PLAMA19-based nanocarriers, resulted in high antitumor activity in 2D and 3D culture models of HCC, which was significantly enhanced by the combination with small amounts of docetaxel. Overall, our results demonstrated the potential of primary-amine polymethacrylate-containing-glycopolymers as HCC-targeted suicide gene delivery nanosystems and highlight the importance of combined strategies for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Docetaxel , Receptor de Asialoglicoproteína/genética , Linhagem Celular Tumoral , Terapia Genética
18.
Brain Sci ; 13(1)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36672126

RESUMO

Neurodegenerative diseases (ND) include a wide range of conditions that result from progressive damage to the neurons. Alzheimer's disease (AD) is one of the most common NDs, and neuroinflammation and oxidative stress (OS) are the major factors in the development and progression of the disease. Many naturally occurring phytochemical compounds exhibit antioxidant and anti-inflammatory activities with potential neuroprotective effects. Several plant species, including Alpinia katsumadai and Alpinia conchigera, contain cardamonin (CD). CD (2',4'-dihydroxy-6'methoxychalcone) has many therapeutic properties, including anticancer, anti-inflammatory, antioxidant, antiviral, and antibiotic activities. CD is a potent compound that can reduce OS and modulate the inflammatory processes that play a significant part in developing neurodegenerative diseases. CD has been shown to modulate a variety of signaling molecules involved in the development and progression of ND, including transcription factors (NF-kB and STAT3), cytokines (TNF-α, IL-1, and IL-6), enzymes (COX-2, MMP-9, and ALDH1), and other proteins and genes (Bcl-2, XIAP, and cyclin D1). Additionally, CD effectively modulates miRNA levels and autophagy-related CD-protective mechanisms against neurodegeneration. In summary, this review provides mechanistic insights into CD's ability to modify multiple oxidative stress-antioxidant system pathways, Nrf2, and neuroinflammation. Additionally, it points to the possible therapeutic potential and preventive utilization of CD in neurodegenerative diseases, most specifically AD.

19.
Biomater Adv ; 145: 213267, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36599197

RESUMO

The use of gene-based products, such as DNA or RNA, is increasingly being explored for various innovative therapies. However, the success of these strategies is highly dependent on the effective delivery of these biomolecules to target cells. Therefore, the development of pH-responsive nanoparticles comprises the creation of intelligent delivery systems with high therapeutic efficiency. In this work, the pH-responsiveness of the poly(2-(diisopropylamino)ethyl methacrylate)) (PDPA) block was investigated for the encapsulation and delivery of small RNAs (sRNA) to cancer cells. The pH responsiveness was dependent on the protonation profile of the tertiary amines of PDPA, which directly affected the electrostatic interactions established with RNA. Thus, block copolymers based on poly(oligo(ethylene oxide) methyl ether methacrylate) (POEOMA) and PDPA, POEOMA-b-PDPA, were synthesized by supplemental activator and reducing agent atom transfer radical polymerization (SARA ATRP). The structure of the block copolymers was characterized by size exclusion chromatography and 1H NMR spectroscopy. The copolymers allowed effective complexation of model sRNAs and a pre-miRNA with efficiencies of about 89 % and 91 %, respectively. The characterization by dynamic light scattering revealed that these systems had sizes between 76 and 1375 nm. It was also found that the morphology of the polyplexes depended on the pH, since the preparation at a pH lower than the pKa of the copolymers resulted in spherical but polydisperse particles, while higher pH values resulted in nanoparticles with more homogeneous size, but altered morphology. Moreover, due to pH-responsiveness, it was achieved the release of RNA at pH higher than the pKa of the copolymers, while maintaining its integrity. The polyplexes also showed a high potential to protect RNA from RNases. The transfection of a lung cancer model (A549) and fibroblast cell lines showed that these polyplexes did not cause cell toxicity. In addition, the polyplexes enabled the effective transfection of the A549 cell line with pre-miRNA-29b and miRNA-29b, resulting in a decrease of expression levels of the target DNMT3B gene by approximately 51 % and 47 %, respectively. Overall, the POEOMA-b-PDPA copolymers proved to be a promising strategy for developing responsive delivery systems, that can play a critical role in some diseases, such as cancer, where pH varies between the intra and extracellular environments.


Assuntos
MicroRNAs , Nanopartículas , Polímeros , Metacrilatos/química , Nanopartículas/química , Concentração de Íons de Hidrogênio
20.
Crit Rev Microbiol ; 49(1): 38-56, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35171731

RESUMO

Considering the multifaceted and increasing application of photodynamic therapy (PDT), in recent years the antimicrobial employment of this therapy has been highlighted, because of the antiviral, antibacterial, antiparasitic, and antifungal activities that have already been demonstrated. In this context, research focussed on antimycological action, especially for treatment of superficial infections, presents promising growth due to the characteristics of these infections that facilitate PDT application as new therapeutic options are needed in the field of medical mycology. Among the more than one hundred classes of photosensitizers the antifungal action of hypericin (Hyp) stands out due to its ability to permeate the lipid membrane and accumulate in different cytoplasmic organelles of eukaryotic cells. In this review, we aim to provide a complete overview of the origin, physicochemical characteristics, and optimal alternative drug deliveries that promote the photodynamic action of Hyp (Hyp-PDT) against fungi. Furthermore, considering the lack of a methodological consensus, we intend to compile the best strategies to guide researchers in the antifungal application of Hyp-PDT. Overall, this review provides a future perspective of new studies and clinical possibilities for the advances of such a technique in the treatment of mycoses in humans.


Assuntos
Anti-Infecciosos , Produtos Biológicos , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Anti-Infecciosos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA