RESUMO
Background: Type 2 diabetes (T2D) is one of the leading causes of mortality and is a public health challenge worldwide. Metformin is the first-choice treatment for T2D; its pharmacokinetics (PK) is facilitated by members of the solute carrier (SLC) superfamily of transporters, it is not metabolized, and it is excreted by the kidney. Although interindividual variability in metformin pharmacokinetics is documented in the Mexican population, its pharmacogenomics is still underexplored. We aimed to identify variants in metformin SLC transporter genes associated with metformin PK and response in Mexican patients. Methods: Using exome data from 2217 Mexican adults, we identified 86 biallelic SNVs in the eight known genes encoding SLC transporters, with a minor allele frequency ≥ 1%, which were analyzed in an inadequate glycemic control (IGC) association study in T2D metformin treated patients. Metformin PK was evaluated in a pediatric cohort and the effect of associated SNVs was correlated. Results: Functional annotation classified two SNVs as pathogenic. The association study revealed two blocks associated with IGC. These haplotypes comprise rs622591, rs4646272, rs4646273, and rs4646276 in SLC22A1; and rs1810126 and rs668871 in SLC22A3. PK profiles revealed that homozygotes of the SLC22A1 haplotype reached lower plasma metformin concentrations 2 h post administration than the other groups. Conclusions: Our findings highlight the potential of pharmacogenomics studies to enhance precision medicine, which may involve dosage adjustments or the exploration of alternative therapeutic options. These hold significant implications for public health, particularly in populations with a high susceptibility to develop metabolic diseases, such as Latin Americans.
RESUMO
INTRODUCTION: Pathogenic or likely pathogenic germline variants (PGVs) in cancer predisposition genes may play a role in lung cancer (LC) susceptibility. However, determining an eligible population for genetic testing remains uncertain. This study aimed to assess the prevalence of PGVs in a selected cohort of individuals with lung adenocarcinoma. METHODS: A cross-sectional cohort study was conducted to assess the PGVs rate in lung adenocarcinoma patients with a family history of LC, young-onset presentation, history of never/light smoking, or actionable genomic alterations (AGAs). Sequencing was performed using Sophia Hereditary Cancer Solution panel F, including 144 cancer predisposition genes. Variants classified as pathogenic or likely pathogenic were included for further analysis. RESULTS: Of 201 patients, 43 (21.4 %) exhibited PGVs, among which 64.5 % were DNA damage repair genes, and 86.1 % were clinically actionable. The main PGVs were in ATM (9.3 %), TP53 (6.9 %), BRCA2 (6.9 %), and CHEK2 (6.9 %) genes. PGVs were associated with male sex (adjusted odds ratio [aOR] 2.46, 95 % CI 1.15-5.32, p = 0.021), along with a trend toward association with AGAs (aOR 6.04, 95 % CI 0.77-49.74, p = 0.094). CONCLUSIONS: In this study, a high PGVs prevalence was identified based on our selection criteria, which represents an effective strategy to identify candidates for germline genomic testing, potential screening strategies in close relatives, and personalized therapeutic modalities. Our results warrant further exploration in other populations to confirm them.
Assuntos
Adenocarcinoma de Pulmão , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Neoplasias Pulmonares , Humanos , Masculino , Feminino , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/epidemiologia , Adenocarcinoma de Pulmão/patologia , Pessoa de Meia-Idade , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/patologia , Estudos Transversais , Prevalência , Idoso , Adulto , Testes Genéticos/métodos , Estudos de Coortes , Quinase do Ponto de Checagem 2/genéticaRESUMO
Background: Molecular diagnosis of cystic fibrosis (CF) is challenging in Mexico due to the population's high genetic heterogeneity. To date, 46 pathogenic variants (PVs) have been reported, yielding a detection rate of 77%. We updated the spectrum and frequency of PVs responsible for this disease in mexican patients. Methods: We extracted genomic DNA from peripheral blood lymphocytes obtained from 297 CF patients and their parents. First, we analyzed the five most frequent PVs in the Mexican population using PCR-mediated site-directed mutagenesis. In patients with at least one identified allele, CFTR sequencing was performed using next-generation sequencing tools and multiplex ligation-dependent probe amplification. For variants not previously classified as pathogenic, we used a combination of in silico prediction, CFTR modeling, and clinical characteristics to determine a genotype-phenotype correlation. Results: We identified 95 PVs, increasing the detection rate to 87.04%. The most frequent variants were p.(PheF508del) (42.7%), followed by p.(Gly542*) (5.6%), p.(Ser945Leu) (2.9%), p.(Trp1204*) and p.(Ser549Asn) (2.5%), and CFTRdel25-26 and p.(Asn386Ilefs*3) (2.3%). The remaining variants had frequencies of <2.0%, and some were exclusive to one family. We identified 10 novel PVs localized in different exons (frequency range: 0.1-0.8%), all of which produced structural changes, deletions, or duplications in different domains of the protein, resulting in dysfunctional ion flow. The use of different in silico software and American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) criteria allowed us to assume that all of these PVs were pathogenic, causing a severe phenotype. Conclusions: In a highly heterogeneous population, combinations of different tools are needed to identify the variants responsible for CF and enable the establishment of appropriate strategies for CF diagnosis, prevention, and treatment.
RESUMO
Background: Recurrent genetic alterations contributing to leukemogenesis have been identified in pediatric B-cell Acute Lymphoblastic Leukemia (B-ALL), and some are useful for refining classification, prognosis, and treatment selection. IKZF1plus is a complex biomarker associated with a poor prognosis. It is characterized by IKZF1 deletion coexisting with PAX5, CDKN2A/2B, or PAR1 region deletions. The mutational spectrum and clinical impact of these alterations have scarcely been explored in Mexican pediatric patients with B-ALL. Here, we report the frequency of the IKZF1plus profile and the mutational spectrum of IKZF1, PAX5, CDKN2A/2B, and ERG genes and evaluate their impact on overall survival (OS) in a group of patients with B-ALL. Methods: A total of 206 pediatric patients with de novo B-ALL were included. DNA was obtained from bone marrow samples at diagnosis before treatment initiation. A custom-designed next-generation sequencing panel was used for mutational analysis. Kaplan-Meier analysis was used for OS estimation. Results: We identified the IKZF1plus profile in 21.8% of patients, which was higher than that previously reported in other studies. A significantly older age (p=0.04), a trend toward high-risk stratification (p=0.06), and a decrease in 5-year Overall Survival (OS) (p=0.009) were observed, although heterogeneous treatment protocols in our cohort would have impacted OS. A mutation frequency higher than that reported was found for IKZF1 (35.9%) and CDKN2A/2B (35.9%) but lower for PAX5 (26.6%). IKZF1MUT group was older at diagnosis (p=0.0002), and most of them were classified as high-risk (73.8%, p=0.02), while patients with CDKN2A/2BMUT had a higher leukocyte count (p=0.01) and a tendency toward a higher percentage of blasts (98.6%, >50% blasts, p=0.05) than the non-mutated patients. A decrease in OS was found in IKZF1MUT and CDKN2A/2BMUT patients, but the significance was lost after IKZF1plus was removed. Discussion: Our findings demonstrated that Mexican patients with B-ALL have a higher prevalence of genetic markers associated with poor outcomes. Incorporating genomic methodologies into the diagnostic process, a significant unmet need in low- and mid-income countries, will allow a comprehensive identification of relevant alterations, improving disease classification, treatment selection, and the general outcome.
RESUMO
B-cell acute lymphoblastic leukemia (B-ALL) is one of the most common childhood cancers worldwide. Although most cases are sporadic, some familial forms, inherited as autosomal dominant traits with incomplete penetrance, have been described over the last few years. Germline pathogenic variants in transcription factors such as PAX5, IKZF1, and ETV6 have been identified as causal in familial forms. The proband was a 7-year-old Mexican girl diagnosed with high-risk B-ALL at five years and 11 months of age. Family history showed that the proband's mother had high-risk B-ALL at 16 months of age. She received chemotherapy and was discharged at nine years of age without any evidence of recurrence of leukemia. The proband's father was outside the family nucleus, but no history of leukemia or cancer was present up to the last contact with the mother. We performed exome sequencing on the proband and the proband's mother and identified the PAX5 variant NM_016734.3:c.963del: p.(Ala322LeufsTer11), located in the transactivation domain of the PAX5 protein. The variant was classified as probably pathogenic according to the ACMG criteria. To the best of our knowledge, this is the first Mexican family with an inherited increased risk of childhood B-ALL caused by a novel germline pathogenic variant of PAX5. Identifying individuals with a hereditary predisposition to cancer is essential for modern oncological practice. Individuals at high risk of leukemia would benefit from hematopoietic stem cell transplantation, but family members carrying the pathogenic variant should be excluded as hematopoietic stem cell donors.
RESUMO
BACKGROUND: Childhood cancer is one of the primary causes of disease-related death in 5- to 14-year-old children and currently no prevention strategies exist to reduce the incidence of this disease. Childhood cancer has a larger hereditary component compared with cancer in adults. Few genetic studies have been conducted on children with cancer. Additionally, Latin American populations are underrepresented in genomic studies compared with other populations. Therefore, the aim of this study is to analyze germline mutations in a group of mixed-ancestry Mexican pediatric patients with solid and hematological cancers. METHODS: We analyzed genetic variants from 40 Mexican childhood cancer patients and their relatives. DNA from saliva or blood samples was used for whole-exome sequencing. All variants were identified following GATK best practices. RESULTS: We found that six patients (15%) were carriers of germline mutations in CDKN2A, CHEK2, DICER1, FANCA, MSH6, MUTYH, NF1, and SBDS cancer predisposition genes, and additional new variants predicted to be deleterious by in silico algorithms. A population genetics analysis detected five components consistent with the demographic models assumed for modern mixed-ancestry Mexicans. CONCLUSIONS: This report identifies potential genetic risk factors and provides a better understanding of the underlying mechanisms of childhood cancer in this population.
Assuntos
Mutação em Linhagem Germinativa , Neoplasias , População Norte-Americana , Adulto , Humanos , Criança , Pré-Escolar , Adolescente , Predisposição Genética para Doença , Neoplasias/genética , Sequenciamento do Exoma , Ribonuclease III , RNA Helicases DEAD-boxRESUMO
Childhood cancer is a leading cause of death by disease in children ages 5-14, for which there are no preventive strategies. Due to early-age of diagnosis and short period of exposure to environmental factors, increasing evidence suggests childhood cancer could have strong association with germline alterations in predisposition cancer genes but, their frequency and distribution are largely unknown. Several efforts have been made to develop tools to identify children with increased risk of cancer who may benefit from genetic testing but their validation and application on a large scale is necessary. Research on genetic bases of childhood cancer is ongoing, in which several approaches for the identification of genetic variants related to cancer predisposition have been used. In this paper, we discuss the updated efforts, strategies, molecular mechanisms and clinical implications for germline predisposition gene alterations and the characterization of risk variants in childhood cancer.
Assuntos
Neoplasias , Humanos , Criança , Pré-Escolar , Adolescente , Neoplasias/genética , Predisposição Genética para Doença , Testes Genéticos , GenótipoRESUMO
Few studies have addressed how selective pressures have shaped the genetic structure of the current Native American populations, and they have mostly limited their inferences to admixed Latin American populations. Here, we searched for local adaptation signals, based on integrated haplotype scores and population branch statistics, in 325 Mexican Indigenous individuals with at least 99% Native American ancestry from five previously defined geographical regions. Although each region exhibited its own local adaptation profile, only PPARG and AJAP1, both negative regulators of the Wnt/ß catenin signaling pathway, showed significant adaptation signals in all the tested regions. Several signals were found, mainly in the genes related to the metabolic processes and immune response. A pathway enrichment analysis revealed the overrepresentation of selected genes related to several biological phenotypes/conditions, such as the immune response and metabolic pathways, in agreement with previous studies, suggesting that immunological and metabolic pressures are major drivers of human adaptation. Genes related to the gut microbiome measurements were overrepresented in all the regions, highlighting the importance of studying how humans have coevolved with the microbial communities that colonize them. Our results provide a further explanation of the human evolutionary history in response to environmental pressures in this region.
Assuntos
Adaptação Fisiológica , Indígena Americano ou Nativo do Alasca , Humanos , México , Adaptação Fisiológica/genética , Hispânico ou Latino , Grupos RaciaisRESUMO
Background: Plasma lipid levels are a major risk factor for cardiovascular diseases. Although international efforts have identified a group of loci associated with the risk of dyslipidemia, Latin American populations have been underrepresented in these studies. Objective: To know the genetic variation occurring in lipid-related loci in the Mexican population and its association with dyslipidemia. Methods: We searched for single-nucleotide variants in 177 lipid candidate genes using previously published exome sequencing data from 2838 Mexican individuals belonging to three different cohorts. With the extracted variants, we performed a case-control study. Logistic regression and quantitative trait analyses were implemented in PLINK software. We used an LD pruning using a 50-kb sliding window size, a 5-kb window step size and a r2 threshold of 0.1. Results: Among the 34251 biallelic variants identified in our sample population, 33% showed low frequency. For case-control study, we selected 2521 variants based on a minor allele frequency ≥1% in all datasets. We found 19 variants in 9 genes significantly associated with at least one lipid trait, with the most significant associations found in the APOA1/C3/A4/A5-ZPR1-BUD13 gene cluster on chromosome 11. Notably, all 11 variants associated with hypertriglyceridemia were within this cluster; whereas variants associated with hypercholesterolemia were located at chromosome 2 and 19, and for low high density lipoprotein cholesterol were in chromosomes 9, 11, and 19. No significant associated variants were found for low density lipoprotein. We found several novel variants associated with different lipemic traits: rs3825041 in BUD13 with hypertriglyceridemia, rs7252453 in CILP2 with decreased risk to hypercholesterolemia and rs11076176 in CETP with increased risk to low high density lipoprotein cholesterol. Conclusions: We identified novel variants in lipid-regulation candidate genes in the Mexican population, an underrepresented population in genomic studies, demonstrating the necessity of more genomic studies on multi-ethnic populations to gain a deeper understanding of the genetic structure of the lipemic traits.
RESUMO
Spinocerebellar ataxias (SCAs) conform a heterogeneous group of neurodegenerative disorders with autosomal dominant inheritance. Five of the most frequent SCAs are caused by a CAG repeat expansion in the exons of specific genes. The SCAs incidence and the distribution of polymorphic CAG alleles vary among populations and ethnicities. Thus, characterization of the genetic architecture of ethnically diverse populations, which have undergone recent admixture and demographic events, could facilitate the identification of genetic risk factors. Owing to the great ethnic diversity of the Mexican population, this study aimed to analyze the allele frequencies of five SCA microsatellite loci (SCA1, SCA2, SCA3, SCA6, and SCA7) in eleven Mexican Native American (MNA) populations. Data from the literature were used to compare the allelic distribution of SCA loci with worldwide populations. The SCA loci allelic frequencies evidenced a certain genetic homogeneity in the MNA populations, except for Mayans, who exhibited distinctive genetic profiles. Neither pathological nor large normal alleles were found in MNA populations, except for the SCA2 pre-mutated allele in the Zapotec population. Collectively, our findings demonstrated the contribution of the MNA ancestry in shaping the genetic structure of contemporary Mexican Mestizo populations. Our results also suggest that Native American ancestry has no impact on the origin of SCAs in the Mexican population. Instead, the acquisition of pathological SCA alleles could be associated with European migration.
Assuntos
Indígena Americano ou Nativo do Alasca/genética , Ataxina-1/genética , Etnicidade/genética , Genética Populacional , Repetições de Microssatélites , Ataxias Espinocerebelares/genética , Expansão das Repetições de Trinucleotídeos , Frequência do Gene , Humanos , México/epidemiologia , Ataxias Espinocerebelares/epidemiologiaRESUMO
The genetic makeup of Indigenous populations inhabiting Mexico has been strongly influenced by geography and demographic history. Here, we perform a genome-wide analysis of 716 newly genotyped individuals from 60 of the 68 recognized ethnic groups in Mexico. We show that the genetic structure of these populations is strongly influenced by geography, and our demographic reconstructions suggest a decline in the population size of all tested populations in the last 15-30 generations. We find evidence that Aridoamerican and Mesoamerican populations diverged roughly 4-9.9 ka, around the time when sedentary farming started in Mesoamerica. Comparisons with ancient genomes indicate that the Upward Sun River 1 (USR1) individual is an outgroup to Mexican/South American Indigenous populations, whereas Anzick-1 was more closely related to Mesoamerican/South American populations than to those from Aridoamerica, showing an even more complex history of divergence than recognized so far.
Assuntos
Etnicidade/genética , Genoma Humano , Migração Humana/história , Indígenas Norte-Americanos/genética , Filogenia , Dinâmica Populacional/estatística & dados numéricos , Etnicidade/classificação , Variação Genética , Genômica/métodos , História Antiga , Humanos , Indígenas Norte-Americanos/classificação , México , FilogeografiaRESUMO
Adipogenesis regulation is crucial for mature adipocyte function. In obesity, a major driver of type 2 diabetes (T2D), this process is disrupted and remains poorly characterized. Here we identified altered DNA methylation profiles in diabetic obese patients, during three adipocytes differentiation stages. We isolated mesenchymal cells from visceral adipose tissue of obese patients with and without T2D to analyse DNA methylation profiles at 0, 3, and 18 days of ex vivo differentiation and documented their impact on gene expression. Methylation and gene expression were analysed with EPIC and Clarion S arrays, respectively. Patients with T2D had epigenetic alterations in all the analysed stages, and these were mainly observed in genes important in adipogenesis, insulin resistance, cell death programming, and immune effector processes. Importantly, at 3 days, we found six-fold more methylated CpG alterations than in the other stages. This is the first study to document epigenetic markers that persist through all three adipogenesis stages and their impact on gene expression, which could be a cellular metabolic memory involved in T2D. Our data provided evidence that, throughout the adipogenesis process, alterations occur in methylation that might impact mature adipocyte function, cause tissue malfunction, and potentially, lead to the development of T2D.
Assuntos
Diabetes Mellitus Tipo 2 , Células-Tronco Mesenquimais , Adipogenia/genética , Tecido Adiposo/metabolismo , Diferenciação Celular , Metilação de DNA , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Epigênese Genética , Humanos , Obesidade/genética , Obesidade/metabolismoRESUMO
Genetic factors that affect variability in metformin response have been poorly studied in the Latin American population, despite its being the initial drug therapy for type 2 diabetes, one of the most prevalent diseases in that region. Metformin pharmacokinetics is carried out by members of the membrane transporters superfamily (SLCs), being the multidrug and toxin extrusion protein 1 (MATE1), one of the most studied. Some genetic variants in MATE1 have been associated with reduced in vitro metformin transport. They include rs77474263 p.[L125F], a variant present at a frequency of 13.8% in Latin Americans, but rare worldwide (less than 1%). Using exome sequence data and TaqMan genotyping, we revealed that the Mexican population has the highest frequency of this variant: 16% in Mestizos and 27% in Amerindians, suggesting a possible Amerindian origin. To elucidate the metformin pharmacogenetics, a children cohort was genotyped, allowing us to describe, for the first time, a MATE1 rs77474263 TT homozygous individual. An additive effect of the L125F variant was observed on blood metformin accumulation, revealing the highest metformin and lactate serum levels in the TT homozygote, and intermediate metformin values in the heterozygotes. Moreover, a molecular dynamics analysis suggested that the genetic variant effect on metformin efflux could be due to a decreased protein permeability. We conclude that pharmacogenetics could be useful in enhancing metformin pharmacovigilance in populations having a high frequency of the risk genotype, especially considering that these populations also have a higher susceptibility to the diseases for which metformin is the first-choice drug.
Assuntos
Hipoglicemiantes/farmacocinética , Metformina/farmacocinética , Proteínas de Transporte de Cátions Orgânicos/genética , Farmacogenética , Adolescente , Adulto , Criança , Estudos de Coortes , Feminino , Variação Genética , Genótipo , Humanos , Indígenas Norte-Americanos/genética , Ácido Láctico/sangue , Masculino , México , Simulação de Dinâmica MolecularRESUMO
BACKGROUND: We investigated pathogenic DYRK1B variants causative of abdominal obesity-metabolic syndrome 3 (AOMS3) in a group of patients originally diagnosed with type 2 diabetes. All DYRK1B exons were analyzed in a sample of 509 unrelated adults with type 2 diabetes and 459 controls, all belonging to the DMS1 SIGMA-cohort (ExAC). We performed in silico analysis on missense variants using Variant Effect Predictor software. To evaluate co-segregation, predicted pathogenic variants were genotyped in other family members. We performed molecular dynamics analysis for the co-segregating variants. RESULTS: After filtering, Mendelian genotypes were confirmed in two probands bearing two novel variants, p.Arg252His and p.Lys68Gln. Both variants co-segregated with the AOMS3 phenotype in classic dominant autosomal inheritance with full penetrance. In silico analysis revealed impairment of the DYRK1B protein function by both variants. For the first time, we describe age-dependent variable expressivity of this entity, with central obesity and insulin resistance apparent in childhood; morbid obesity, severe hypertriglyceridemia, and labile type 2 diabetes appearing before 40 years of age; and hypertension emerging in the fifth decade of life. We also report the two youngest individuals suffering from AOMS3. CONCLUSIONS: Monogenic forms of metabolic diseases could be misdiagnosed and should be suspected in families with several affected members and early-onset metabolic phenotypes that are difficult to control. Early diagnostic strategies and medical interventions, even before symptoms or complications appear, could be useful.
Assuntos
Diabetes Mellitus Tipo 2 , Adulto , Diabetes Mellitus Tipo 2/genética , Genótipo , Humanos , Mutação , Linhagem , FenótipoRESUMO
BACKGROUND: An Amerindian genetic background could play an important role in susceptibility to metabolic diseases, which have alarmingly increased in recent decades. Mexico has one of the highest prevalences of metabolic disease worldwide. The purpose of this study was to determine the prevalence of metabolic syndrome and its components in a population with high Amerindian ancestry. METHODS: We performed a descriptive, quantitative, and analytical cross-sectional study of 2596 adult indigenous volunteers from 60 different ethnic groups. Metabolic syndrome and its components were evaluated using the American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement criteria. RESULTS: The overall prevalence of metabolic syndrome in the indigenous Mexican population was 50.3%. Although females had a higher prevalence than males (55.6% vs. 38.2%), the males presented with combinations of metabolic syndrome components that confer a higher risk of cardiovascular disease. The most frequent metabolic syndrome component in both genders was low HDL-cholesterol levels (75.8%). Central obesity was the second most frequent component in females (61%), though it had a low prevalence in males (16.5%). The overall prevalence of elevated blood pressure was 42.7% and was higher in males than females (48.8 vs. 40%). We found no gender differences in the overall prevalence of elevated triglycerides (56.7%) or fasting glucose (27.9%). CONCLUSIONS: We documented that individuals with Amerindian ancestry have a high prevalence of metabolic syndrome. Health policies are needed to control the development of metabolic disorders in a population with high genetic risk.
Assuntos
Indígenas Norte-Americanos/estatística & dados numéricos , Síndrome Metabólica/epidemiologia , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , Síndrome Metabólica/etnologia , México/epidemiologia , Pessoa de Meia-Idade , Obesidade Abdominal/epidemiologia , Obesidade Abdominal/etnologia , Prevalência , Fatores de RiscoRESUMO
The Mexican population is characterized by high and particular admixture, and the picture of variants associated with disease remains unclear. Here we investigated the distribution of single nucleotide polymorphisms (SNPs) in the Mexican population. We focused on two non-synonymous and three synonymous SNPs in the beta-2 adrenergic receptor gene (ADRB2), which plays key roles in energy balance regulation. These SNPs were genotyped in 2,011 Mexican Amerindians (MAs) belonging to 62 ethnic groups and in 1,980 geographically matched Mexican Mestizos (MEZs). The frequency distribution of all five ADRB2 variants significantly differed between MAs, MEZs, and other continental populations (CPs) from the 1000 Genomes database. Allele frequencies of the three synonymous SNPs rs1042717A, rs1042718A, and rs1042719C were significantly higher in Mexican individuals, particularly among MAs, compared to in the other analyzed populations (P<0.05). The non-synonymous ADRB2 Glu27 allele (rs1042714G), which is associated with several common conditions, showed the lowest frequency in MAs (0.03) compared to other populations worldwide. Among MEZs, this allele showed a frequency of 0.15, intermediate between that in MAs and in Iberians (0.43). Moreover, Glu27 was the only SNP exhibiting a geographic gradient within the MEZ population (from 0.22 to 0.11), reflecting admixed mestizo ancestry across the country. Population differentiation analysis demonstrated that Glu27 had the highest FST value in MAs compared with Europeans (CEU) (0.71), and the lowest between MAs and Japanese (JPT) (0.01), even lower than that observed between MAs and MEZs (0.08). This analysis demonstrated the genetic diversity among Amerindian ethnicities, with the most extreme FST value (0.34) found between the Nahuatls from Morelos and the Seris. This is the first study of ADRB2 genetic variants among MA ethnicities. Our findings add to our understanding of the genetic contribution to variability in disease susceptibility in admixed populations.
Assuntos
População Negra/genética , Etnicidade/genética , Genética Populacional/métodos , Indígenas Norte-Americanos/genética , Polimorfismo de Nucleotídeo Único/genética , Receptores Adrenérgicos beta 2/genética , População Branca/genética , Adulto , África/etnologia , Alelos , Europa (Continente)/etnologia , Feminino , Frequência do Gene/genética , Predisposição Genética para Doença/genética , Haplótipos/genética , Humanos , Masculino , México/etnologiaRESUMO
BACKGROUND: Mexico is among the countries showing the highest heterogeneity of CFTR variants. However, no de novo variants have previously been reported in Mexican patients with cystic fibrosis (CF). CASE PRESENTATION: Here, we report the first case of a novel/de novo variant in a Mexican patient with CF. Our patient was an 8-year-old male who had exhibited the clinical onset of CF at one month of age, with steatorrhea, malabsorption, poor weight gain, anemia, and recurrent respiratory tract infections. Complete sequencing of the CFTR gene by next generation sequencing (NGS) revealed two different variants in trans, including the previously reported CF-causing variant c.3266G > A (p.Trp1089*, W1089*), that was inherited from the mother, and the novel/de novo CFTR variant c.1762G > T (p.Glu588*). CONCLUSION: Our results demonstrate the efficiency of targeted NGS for making a rapid and precise diagnosis in patients with clinically suspected CF. This method can enable the provision of accurate genetic counselling, and improve our understanding of the molecular basis of genetic diseases.
Assuntos
Fibrose Cística/genética , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Sequência de Bases , Criança , Feminino , Humanos , Masculino , México , Linhagem , FenótipoRESUMO
Protein-coding genetic variants that strongly affect disease risk can yield relevant clues to disease pathogenesis. Here we report exome-sequencing analyses of 20,791 individuals with type 2 diabetes (T2D) and 24,440 non-diabetic control participants from 5 ancestries. We identify gene-level associations of rare variants (with minor allele frequencies of less than 0.5%) in 4 genes at exome-wide significance, including a series of more than 30 SLC30A8 alleles that conveys protection against T2D, and in 12 gene sets, including those corresponding to T2D drug targets (P = 6.1 × 10-3) and candidate genes from knockout mice (P = 5.2 × 10-3). Within our study, the strongest T2D gene-level signals for rare variants explain at most 25% of the heritability of the strongest common single-variant signals, and the gene-level effect sizes of the rare variants that we observed in established T2D drug targets will require 75,000-185,000 sequenced cases to achieve exome-wide significance. We propose a method to interpret these modest rare-variant associations and to incorporate these associations into future target or gene prioritization efforts.
Assuntos
Diabetes Mellitus Tipo 2/genética , Sequenciamento do Exoma , Exoma/genética , Animais , Estudos de Casos e Controles , Técnicas de Apoio para a Decisão , Feminino , Frequência do Gene , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos , Camundongos KnockoutRESUMO
Amerindian ancestry appears to be a risk factor for metabolic diseases (MetD), making Mexicans an ideal population to better understand the genetic architecture of metabolic health. In this study, we determine the association of genetic variants previously reported with metabolic entities, in two Mexican populations, including the largest sample of Amerindians reported to date. We investigated the association of eigth single-nucleotide polymorphisms (SNPs) in AKT1, GCKR, and SOCS3 genes with different metabolic traits in 1923 Mexican Amerindians (MAs) belonging to 57 ethnic groups, and 855 Mestizos (MEZs). The allele frequency of 7/8 SNPs showed significant differences between MAs and MEZs. Interestingly, some alleles were monomorphic in particular ethnic groups, and highly frequent in other ones. With the exception of GCKR rs1260326T, as expected, all SNP frequencies in the MEZ population had intermediate values between its two main ancestral populations (MAs and Iberian populations in Spain [IBS]). We detected ethnic differences in linkage disequilibrium patterns and haplotype structure between MAs and MEZs, possibly due to the high genetic heterogeneity in these populations. Remarkably, AKT1 was associated with hypertension in MEZs, but not in MAs. GCKR was associated with protection against type 2 diabetes (T2D) in MAs, and with hypertriglyceridemia and protection against low HDL Cholesterol (HDL-C) levels in MEZs. The CAT haplotype in SOCS3 was associated with metabolic syndrome (MetS) in MEZs, and correlated with protection against high blood pressure (HBP) and risk for high waist circumference and T2D in MAs. Our results show differential genetic associations with metabolic traits between MAs and MEZs, possibly due to the differences in genetic structure between these Mexican populations.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Diabetes Mellitus Tipo 2/genética , Síndrome Metabólica/genética , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-akt/genética , Proteína 3 Supressora da Sinalização de Citocinas/genética , Adulto , Idoso , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Hipertensão/genética , Hipertrigliceridemia/genética , Desequilíbrio de Ligação , Masculino , México/etnologia , Pessoa de Meia-IdadeRESUMO
Ovarian fibrosarcomas are extremely rare tumors with little genomic information available to date. In the present report we present the tumoral exome and transcriptome and the germinal exome of an ovarian fibrosarcoma from a 9-years old child. We found a paucity of mutations (0.77/Mb) and CNV alterations. Of these, the most relevant were a point mutation in the metal-binding site of the microRNA-processing DICER1 enzyme and a frame-shift alteration in the tumor suppressor gene NF1. We validated a germinal truncating mutation in DICER1, which was consistent with a DICER1 Syndrome diagnosis, providing the first example of an ovarian fibrosarcoma as the presenting neoplasia in this syndrome. Network and enrichment analyses showed that both a mesenchymal signature and a Hedgehog cascade could be driving the progression of this tumor. We were also able to find a global lincRNA deregulation, as the number of lincRNAs transcripts expressed in the tumor was decreased, with a concomitant upregulation of previously described non-coding transcripts associated with cancer, such as MALAT1, MIR181A1HG, CASC1, XIST and FENDRR. DICER1 Syndrome should be considered as a possible diagnosis in children ovarian fibrosarcoma. The role of lncRNAs in neoplasias associated with DICER1 alterations need to be studied in more detail.