Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Dis ; 106(9): 2355-2369, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35350902

RESUMO

Colletotrichum causing anthracnose in mango is known for its variable virulence that may have an effect on disease development and efficacy of management strategies. In this study, we characterized Colletotrichum spp. isolated from mango fruits under in vitro and in vivo conditions using close-range thermography and reflectance spectroscopy. Twenty-six isolates were phylogenetically characterized to ascertain species using the internal transcribed spacer sequence. Virulence, spectral (in vivo and in vitro), and thermographic responses (in vivo) of these isolates were analyzed. Isolates were grouped into the Colletotrichum gloeosporioides species complex and classified into eight morphotypes. Mycelial growth, conidia production, sporulation abundance, and area under disease progress curve (AUDPC) varied largely among isolates. Disease symptoms were observed 4 days after inoculation (dai), and, for most morphotypes, changes in tissue temperature were registered at 11 dai, with the greatest decrease at 14 dai with pathogen sporulation. In vitro and in vivo morphotypes shared changes in the spectrum range, and main variations were found in the number of informative spectral bands. In vivo average gross reflectance was higher in disease-inoculated tissue than in healthy uninoculated tissue. Morphotype responses varied depending on AUDPC values and postinoculation time. Discriminant analysis of the spectral response using principal component analysis and partial least squares regression explained 94 to 96.3 and 98 to 99.9% of the variance from in vitro and in vivo tests, respectively. Spectral markers were obtained for four distinct morphotype groups. We found three (550 to 650, 650.1 to 790, and 1,300 to 1,400 nm) and two (520 to 830 and 1,100 to 1,450 nm) regions with highly (P < 0.05) discriminant spectral bands for diseased fruits and morphotype characterization.


Assuntos
Colletotrichum , Mangifera , Colletotrichum/genética , Frutas , Filogenia , Doenças das Plantas , Análise Espectral , Termografia
2.
Front Plant Sci ; 12: 702842, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421951

RESUMO

Cape gooseberry production has been limited by vascular wilt caused by Fusarium oxysporum f. sp. physali (Foph). Fusaric acid (FA) is a mycotoxin produced by many Fusarium species such as F. oxysporum formae speciales. The effects of the interaction between this mycotoxin and plants (such as cape gooseberry) under biotic stress (water deficit, WD) have been little explored. Three experiments were carried out. The objectives of this study were to evaluate (i) different Foph inoculum densities (1 × 104 and 1 × 106 conidia ml-1; experiment (1); (ii) the effect of times of exposure (0, 6, 9, and 12 h) and FA concentrations (0, 12.5, 25, 50, and 100 mg L-1; experiment (2), and (iii) the interaction between Foph (1 × 104 conidia mL-1) or FA (25 mg L-1 × 9 h), and WD conditions (experiment 3) on the physiological (plant growth, leaf stomatal conductance (g s ), and photochemical efficiency of PSII (Fv/Fm ratio) and biochemical [malondialdehyde (MDA) and proline] responses of cape gooseberry seedling ecotype Colombia. The first experiment showed that Foph inoculum density of 1 × 106 conidia ml-1 caused the highest incidence of the disease (100%). In the second experiment, g s (~40.6 mmol m-2 s-1) and Fv/Fm ratio (~0.59) decreased, whereas MDA (~9.8 µmol g-1 FW) increased in plants with exposure times of 9 and 12 h and an FA concentration of 100 mg L-1 compared with plants without FA exposure or concentrations (169.8 mmol m-2 s-1, 0.8, and 7.2 µmol g-1 FW for g s , Fv/Fm ratio and MDA, respectively). In the last experiment, the interaction between Foph or FA and WD promoted a higher area under the disease progress curve (AUDPC) (Foph × WD = 44.5 and FA × WD = 37) and lower g s (Foph × WD = 6.2 mmol m-2 s-1 and FA × WD = 9.5 mmol m-2 s-1) compared with plants without any interaction. This research could be considered as a new approach for the rapid scanning of responses to the effects of FA, Foph, and WD stress not only on cape gooseberry plants but also on other species from the Solanaceae family.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA