Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0300667, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512974

RESUMO

Canopeo app was developed as a simple, accurate, rapid, and free tool to analyze ground cover fraction (GCF) from red-green-blue (RGB) images and videos captured in the field. With increasing interest in tools for plant phenotyping in controlled environments, the usefulness of Canopeo to identify differences in growth among Arabidopsis thaliana mutants in a controlled environment were explored. A simple imaging system was used to compare Arabidopsis mutants based on the FLAVIN-BINDING, KELCH REPEAT, F-BOX-1 (FKF1) mutation, which has been identified with increased biomass accumulation. Two FKF1 lines such as null expression (fkf1-t) and overexpression (FKF1-OE) lines were used along with wild type (Col-0). Canopeo was used to phenotype plants, based on biomass estimations. Under long-day photoperiod, fkf1-t had increased cellulose biosynthesis, and therefore biomass. Resource partitioning favored seedling vigor and delayed onset of senescence. In contrast, FKF1-OE illustrated a determinative growth habit where plant resources are primarily allocated for seed production. This study demonstrates the use of Canopeo for model plants and highlights its potential for phenotyping broadleaved crops in controlled environments. The value of adapting Canopeo for lab use is those with limited experience and resources have access to phenotyping methodology that is simple, accessible, accurate, and cost-efficient in a controlled environment setting.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Aplicativos Móveis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Fotoperíodo , Regulação da Expressão Gênica de Plantas
2.
Plants (Basel) ; 12(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36771626

RESUMO

Plants have mechanisms to relocate chloroplasts based on light intensities in order to maximize photosynthesis and reduce photodamage. Under low light, chloroplasts move to the periclinal walls to increase photosynthesis (accumulation) and move to the anticlinal walls under high light to avoid photodamage, and even cell death (avoidance). Arabidopsis blue light receptors phot1 and phot2 (phototropins) have been reported to regulate chloroplast movement. This study discovered that another blue light receptor, FLAVIN-BINDING KELCH REPEAT F-BOX1 (FKF1), regulates chloroplast photorelocation by physically interacting with chloroplast unusual positioning protein 1 (CHUP1), a critical component of the chloroplast motility system. Leaf cross-sectioning and red-light transmittance results showed that overexpression of FKF1 compromised the avoidance response, while the absence of FKF1 enhanced chloroplast movements under high light. Western blot analysis showed that CHUP1 protein abundance is altered in FKF1 mutants and overexpression lines, indicating a potential regulation of CHUP1 by FKF1. qPCR results showed that two photorelocation pathway genes, JAC1 and THRUMIN1, were upregulated in FKF1-OE lines, and overexpression of FKF1 in the THRUMIN1 mutant weakened its accumulation and avoidance responses, indicating that JAC1 and THRUMIN1 may play a role in the FKF1-mediated chloroplast avoidance response. However, the precise functional roles of JAC1 and THRUMIN1 in this process are not known.

3.
Plants (Basel) ; 11(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36559643

RESUMO

Sorghum [Sorghum bicolor (L.) Moench] is an important crop for food, feed, and fuel production. Particularly, sorghum is targeted for cellulosic ethanol production. Extraction of cellulose from cell walls is a key process in cellulosic ethanol production, and understanding the components involved in cellulose synthesis is important for both fundamental and applied research. Despite the significance in the biofuel industry, the genes involved in sorghum cell wall biosynthesis, modification, and degradation have not been characterized. In this study, we have identified and characterized three allelic thick leaf mutants (thl1, thl2, and thl3). Bulked Segregant Analysis sequencing (BSAseq) showed that the causal mutation for the thl phenotype is in endo-1,4-ß-glucanase gene (SbKOR1). Consistent with the causal gene function, the thl mutants showed decreased crystalline cellulose content in the stem tissues. The SbKOR1 function was characterized using Arabidopsis endo-1,4-ß-glucanase gene mutant (rsw2-1). Complementation of Arabidopsis with SbKOR1 (native Arabidopsis promoter and overexpression by 35S promoter) restored the radial swelling phenotype of rsw2-1 mutant, proving that SbKOR1 functions as endo-1,4-ß-glucanase. Overall, the present study has identified and characterized sorghum endo-1,4-ß-glucanase gene function, laying the foundation for future research on cell wall biosynthesis and engineering of sorghum for biofuel production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA