Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Arch Pharm (Weinheim) ; : e2400171, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710636

RESUMO

This study presents an exploration of the chemical space around derivatives of 3-benzamidopyrazine-2-carboxamides, previously identified as potent antimycobacterial compounds with predicted binding to mycobacterial prolyl-transfer RNA synthetase. New urea derivatives (Series-1) were generally inactive, probably due to their preference for cis-trans conformation (confirmed by density functional theory calculations and experimentally by nuclear overhauser effect spectroscopy NMR). Series-2 (3-benzamidopyrazine-2-carboxamides with disubstituted benzene ring) demonstrated that substituents larger than fluorine are not tolerated in the ortho position of the benzene ring. This series brought two new compounds (21: R = 2-F, 4-Cl and 22: R = 2-F, 4-Br) with in vitro activity against Mycobacterium tuberculosis H37Rv as well as multidrug-resistant clinical isolates, with minimum inhibitory concentration ranging from 6.25 to 25 µg/mL. The lactone-type derivatives 4H-pyrazino[2,3-d][1,3]oxazin-4-ones (Series-3) were inactive, but solvent stability studies of compound 29 indicated that they might be developed to usable lactone prodrugs of inhibitors of mycobacterial aspartate decarboxylase (PanD).

2.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38543156

RESUMO

This Special Issue contains 16 original articles, 3 reviews, and 1 communication [...].

3.
Eur J Med Chem ; 265: 116073, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38169270

RESUMO

Blocking iron uptake and metabolism has been emerging as a promising therapeutic strategy for the development of novel antimicrobial compounds. Like all mycobacteria, M. abscessus (Mab) has evolved several countermeasures to scavenge iron from host carrier proteins, including the production of siderophores, which play a crucial role in these processes. In this study, we solved, for the first time, the crystal structure of Mab-SaS, the first enzyme involved in the biosynthesis of siderophores. Moreover, we screened a small, focused library and identified a compound exhibiting a potent inhibitory effect against Mab-SaS (IC50 ≈ 2 µM). Its binding mode was investigated by means of Induced Fit Docking simulations, performed on the crystal structure presented herein. Furthermore, cytotoxicity data and pharmacokinetic predictions revealed the safety and drug-likeness of this class of compounds. Finally, the crystallographic data were used to optimize the model for future virtual screening campaigns. Taken together, the findings of our study pave the way for the identification of potent Mab-SaS inhibitors, based on both established and unexplored chemotypes.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Humanos , Infecções por Mycobacterium não Tuberculosas/microbiologia , Salicilatos/farmacologia , Sideróforos/farmacologia , Ferro
4.
Chem Biodivers ; 21(2): e202301729, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38241063

RESUMO

Nature-derived products, like juices and peel extracts of fruits and vegetables, have emerged in recent years as interesting and sustainable alternatives to traditional solvents in several synthetic applications. Herein, we present a green and fast method for the N-acetylation of amino acids, using several bio-based solvents (vinegar, tomato/kiwi/apple peel extracts, lemon juice, etc.). The high reactivity of the amino group is often a limitation in synthetic processes, making its protection a necessary step to achieve pure products and limit side reactions. Therefore, versatile, time-efficient procedures, minimal purification efforts, and good yields are desirable features for these transformations. Our new method meets all these criteria, offering a valuable and eco-friendly alternative to traditional approaches. In detail, we managed to obtain comparable yields to established setups, while improving safety and reducing the environmental impact of the overall process. Most notably, the milder conditions made it possible to avoid the use of running water (saving about 250 L/reaction) and electric-powered cooling devices.


Assuntos
Aminoácidos , Frutas , Solventes , Acetilação , Aminas
5.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-38004425

RESUMO

MbtI from Mycobacterium tuberculosis (Mtb) is a Mg2+-dependent salicylate synthase, belonging to the chorismate-utilizing enzyme (CUE) family. As a fundamental player in iron acquisition, MbtI promotes the survival and pathogenicity of Mtb in the infected host. Hence, it has emerged in the last decade as an innovative, potential target for the anti-virulence therapy of tuberculosis. In this context, 5-phenylfuran-2-carboxylic acids have been identified as potent MbtI inhibitors. The first co-crystal structure of MbtI in complex with a member of this class was described in 2020, showing the enzyme adopting an open configuration. Due to the high mobility of the loop adjacent to the binding pocket, large portions of the amino acid chain were not defined in the electron density map, hindering computational efforts aimed at structure-driven ligand optimization. Herein, we report a new, high-resolution co-crystal structure of MbtI with a furan-based derivative, in which the closed configuration of the enzyme allowed tracing the entirety of the active site pocket in the presence of the bound inhibitor. Moreover, we describe a new crystal structure of MbtI in open conformation and in complex with the known inhibitor methyl-AMT, suggesting that in vitro potency is not related to the observed enzyme conformation. These findings will prove fundamental to enhance the potency of this series via rational structure-based drug-design approaches.

6.
Molecules ; 28(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37687179

RESUMO

Bispidines are a family of ligands that plays a pivotal role in various areas of coordination chemistry, with applications in medicinal chemistry, molecular catalysis, coordination polymers synthesis, and molecular magnetism. In the present work, triazole moieties were introduced using the CuAAC click-reaction, with the aim of expanding the number of coordination sites on the bispidine core. The 1,2,3-triazole rings were thus synthesized on propargyl-derived bispidines after reaction with different alkyl azides. The new class of triazole-bispidines was characterized, and their chelation capabilities were evaluated with different metals through NMR titration, ESI-MS spectrometry, and single-crystal X-ray diffraction (SC-XRD). Finally, the suitability of these molecules as metal ligands for the catalytic Henry reaction was demonstrated with copper and zinc.

7.
Biomolecules ; 13(4)2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37189440

RESUMO

PPARγ represents a key target for the treatment of type 2 diabetes and metabolic syndrome. To avoid serious adverse effects related to the PPARγ agonism profile of traditional antidiabetic drugs, a new opportunity is represented by the development of molecules acting as inhibitors of PPARγ phosphorylation by the cyclin-dependent kinase 5 (CDK5). Their mechanism of action is mediated by the stabilization of the PPARγ ß-sheet containing Ser273 (Ser245 in PPARγ isoform 1 nomenclature). In this paper, we report the identification of new γ-hydroxy-lactone-based PPARγ binders from the screening of an in-house library. These compounds exhibit a non-agonist profile towards PPARγ, and one of them prevents Ser245 PPARγ phosphorylation by acting mainly on PPARγ stabilization and exerting a weak CDK5 inhibitory effect.


Assuntos
Diabetes Mellitus Tipo 2 , PPAR gama , Humanos , PPAR gama/metabolismo , Fosforilação , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química
8.
Molecules ; 28(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37175271

RESUMO

Elagolix sodium salt is the first marketed orally active non-peptide gonadotropin-releasing hormone receptor antagonist (GnRHR-ant) for the management of hormone dependent diseases, such as endometriosis and uterine fibroids. Despite its presence on the market since 2018, a thorough NMR analysis of this drug, together with its synthetic intermediates, is still lacking. Hence, with the aim of filling this literature gap, we here performed a detailed NMR investigation, which allowed the complete assignment of the 1H, 13C, and 15N NMR signals. These data allowed, with the support of the conformational analysis, the determination of the stereochemical profile of the two atropisomers, detectable in solution. Moreover, these latter were also detected by means of cellulose-based chiral HPLC, starting from a sample prepared through an implemented synthetic procedure with respect to the reported ones. Overall, these results contribute to further understanding of the topic of atropisomerism in drug discovery and could be applied in the design of safe and stable analogs, endowed with improved target selectivity.


Assuntos
Endometriose , Hormônio Liberador de Gonadotropina , Feminino , Humanos , Hidrocarbonetos Fluorados , Pirimidinas , Cloreto de Sódio , Cloreto de Sódio na Dieta , Álcoois Graxos
9.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047161

RESUMO

The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) infections is one of the most crucial challenges currently faced by the scientific community. Developments in the fundamental understanding of their underlying mechanisms may open new perspectives in drug discovery. In this review, we conducted a systematic literature search in PubMed, Web of Science, and Scopus, to collect information on innovative strategies to hinder iron acquisition in bacteria. In detail, we discussed the most interesting targets from iron uptake and metabolism pathways, and examined the main chemical entities that exhibit anti-infective activities by interfering with their function. The mechanism of action of each drug candidate was also reviewed, together with its pharmacodynamic, pharmacokinetic, and toxicological properties. The comprehensive knowledge of such an impactful area of research will hopefully reflect in the discovery of newer antibiotics able to effectively tackle the antimicrobial resistance issue.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Bactérias , Descoberta de Drogas , Ferro
10.
Pharmaceutics ; 15(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36839823

RESUMO

Targeting pathogenic mechanisms, rather than essential processes, represents a very attractive approach for the development of new antimycobacterial drugs. In this context, iron acquisition routes have recently emerged as potentially druggable pathways. However, the importance of siderophore biosynthesis in the virulence and pathogenicity of M. abscessus (Mab) is still poorly understood. In this study, we investigated the Salicylate Synthase (SaS) of Mab as an innovative molecular target for the development of inhibitors of siderophore production. Notably, Mab-SaS does not have any counterpart in human cells, making it an interesting candidate for drug discovery. Starting from the analysis of the binding of a series of furan-based derivatives, previously identified by our group as inhibitors of MbtI from M. tuberculosis (Mtb), we successfully selected the lead compound 1, exhibiting a strong activity against Mab-SaS (IC50 ≈ 5 µM). Computational studies characterized the key interactions between 1 and the enzyme, highlighting the important roles of Y387, G421, and K207, the latter being one of the residues involved in the first step of the catalytic reaction. These results support the hypothesis that 5-phenylfuran-2-carboxylic acids are also a promising class of Mab-SaS inhibitors, paving the way for the optimization and rational design of more potent derivatives.

11.
J Org Chem ; 88(15): 10381-10402, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-36226862

RESUMO

The synthesis of a collection of enantiomerically pure, systematically substituted hydantoins as structural privileged universal mimetic scaffolds is presented. It relies on a chemoselective condensation/cyclization domino process between isocyanates of quaternary or unsubstituted α-amino esters and N-alkyl aspartic acid diesters followed by standard hydrolysis/coupling reactions with amines, using liquid-liquid acid/base extraction protocols for the purification of the intermediates. Besides the nature of the α carbon on the isocyanate moiety, either a quaternary carbon or a more flexible methylene group, conformational studies in silico (molecular modeling), in solution (NMR, circular dichroism (CD), Fourier transform infrared (FTIR)), and in solid state (X-ray) showed that the presented hydantoin-based peptidomimetics are able to project their substituents in positions superimposable to the side chains of common protein secondary structures such as α-helix and ß-turn, being the open α-helix conformation slightly favorable according to molecular modeling, while the closed ß-turn conformation preferred in solution and in solid state.


Assuntos
Hidantoínas , Peptidomiméticos , Hidantoínas/química , Conformação Molecular , Modelos Moleculares , Ciclização , Dicroísmo Circular , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36015139

RESUMO

Tuberculosis (TB) causes millions of deaths every year, ranking as one of the most dangerous infectious diseases worldwide. Because several pathogenic strains of M. tuberculosis (Mtb) have developed resistance against most of the established anti-TB drugs, new therapeutic options are urgently needed. An attractive target for the development of new anti-TB agents is the salicylate synthase MbtI, the first enzyme of the mycobacterial siderophore biochemical machinery, absent in human cells. In this work, a set of analogues of 5-(3-cyanophenyl)furan-2-carboxylic acid (I), the most potent MbtI inhibitor identified to date, was synthesized, characterized, and tested to further elucidate the structural requirements for achieving an efficient MbtI inhibition and potent antitubercular activity. The structure-activity relationships (SAR) discussed herein evidenced the importance of the side chain linked to the phenyl moiety to improve the in vitro antimycobacterial activity. In detail, 1f emerged as the most effective analogue against the pathogen, acting without cytotoxicity issues. To deepen the understanding of its mechanism of action, we established a fluorescence-based screening test to quantify the pathogen infectivity within host cells, using MPI-2 murine cells, a robust surrogate for alveolar macrophages. The set-up of the new assay demonstrates significant potential to accelerate the discovery of new anti-TB drugs.

13.
Molecules ; 27(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35889322

RESUMO

SIRT5 is a member of the Sirtuin family, a class of deacetylating enzymes consisting of seven isoforms, involved in the regulation of several processes, including gene expression, metabolism, stress response, and aging. Considering that the anomalous activity of SIRT5 is linked to many pathological conditions, we present herein an overview of the most interesting modulators, with the aim of contributing to further development in this field.


Assuntos
Sirtuínas , Isoformas de Proteínas/genética , Sirtuínas/genética , Sirtuínas/metabolismo
14.
Eur J Med Chem ; 234: 114235, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35286928

RESUMO

Mycobacterial resistance is a rapidly increasing phenomenon requiring the identification of new drugs effective against multidrug-resistant pathogens. The inhibition of protein tyrosine phosphatase B (MptpB), which interferes with host immune responses, may provide a new strategy to fight tuberculosis (TB), while preventing cross-resistance issues. On this basis, starting from a virtual screening (VS) campaign and subsequent structure elucidation studies guided by X-ray analyses, an unexpected γ-lactone derivative (compound 1) with a significant enzymatic activity against MptpB was identified. The structural characterization of compound 1 was described by means of NMR spectroscopy, HRMS, single crystal X-ray diffraction and Hirshfeld surface analysis, allowing a detailed conformational investigation. Notably, the HPLC separation of (±)-1 led to the isolation of the most active isomer, which emerged as a very promising MptpB inhibitor, with an IC50 value of 31.1 µM. Overall, the new chemotype described herein might serve as a basis for the development of novel treatments against TB infections.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Antituberculosos/química , Antituberculosos/farmacologia , Proteínas de Bactérias , Inibidores Enzimáticos/farmacologia , Humanos , Lactonas/farmacologia , Tuberculose/prevenção & controle
16.
Molecules ; 26(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34885662

RESUMO

The elucidation of the structure of enzymes and their complexes with ligands continues to provide invaluable insights for the development of drugs against many diseases, including bacterial infections. After nearly three decades since the World Health Organization's (WHO) declaration of tuberculosis (TB) as a global health emergency, Mycobacterium tuberculosis (Mtb) continues to claim millions of lives, remaining among the leading causes of death worldwide. In the last years, several efforts have been devoted to shortening and improving treatment outcomes, and to overcoming the increasing resistance phenomenon. The structural elucidation of enzyme-ligand complexes is fundamental to identify hot-spots, define possible interaction sites, and elaborate strategies to develop optimized molecules with high affinity. This review offers a critical and comprehensive overview of the most recent structural information on traditional and emerging mycobacterial enzymatic targets. A selection of more than twenty enzymes is here discussed, with a special emphasis on the analysis of their binding sites, the definition of the structure-activity relationships (SARs) of their inhibitors, and the study of their main intermolecular interactions. This work corroborates the potential of structural studies, substantiating their relevance in future anti-mycobacterial drug discovery and development efforts.


Assuntos
Antituberculosos/química , Proteínas de Bactérias/química , Desenho de Fármacos/métodos , Descoberta de Drogas/métodos , Inibidores Enzimáticos/química , Mycobacterium tuberculosis/enzimologia , Tuberculose/tratamento farmacológico , Domínio Catalítico , Cristalografia/métodos , Humanos , Ligação de Hidrogênio , Mycobacterium tuberculosis/efeitos dos fármacos , Relação Estrutura-Atividade , Tuberculose/microbiologia
17.
Steroids ; 176: 108928, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34655596

RESUMO

Vecuronium bromide (Piperidinium, 1-[(2ß,3α,5α,16ß,17ß)-3,17-bis(acetyloxy)-2-(1-piperidinyl)androstan-16-yl]-1-methyl-, bromide; Norcuron®) has been extensively used in anesthesiology practice as neuromuscular blocking agent since its launch on the market in 1982. However, a detailed crystallographic and NMR analysis of its advanced synthetic intermediates is still lacking. Hence, with the aim of filling this literature gap, vecuronium bromide was prepared starting from the commercially available 3ß-hydroxy-5α-androstan-17-one (epiandrosterone), implementing some modifications to a traditional synthetic procedure. A careful NMR study allowed the complete assignment of the 1H, 13C, and 15N NMR signals of vecuronium bromide and its synthetic intermediates. The structural and stereochemical characterization of 2ß,16ß-bispiperidino-5α-androstane-3α,17ß-diol, the first advanced synthetic intermediate carrying all the stereocenters in the final configuration, was described by means of single-crystal X-ray diffraction and Hirshfeld surface analysis, allowing a detailed conformational investigation.


Assuntos
Bloqueadores Neuromusculares/química , Brometo de Vecurônio/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Brometo de Vecurônio/análogos & derivados
18.
Eur J Med Chem ; 224: 113732, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34399099

RESUMO

For centuries, natural products (NPs) have served as powerful therapeutics against a variety of human ailments. Nowadays, they still represent invaluable resources for the treatment of many diseases, including bacterial infections. After nearly three decades since the World Health Organization's (WHO) declaration of tuberculosis (TB) as a global health emergency, Mycobacterium tuberculosis (Mtb) continues to claim millions of lives, remaining among the leading causes of death worldwide. In the last years, several efforts have been devoted to shortening and improving treatment outcomes, and to overcoming the increasing resistance phenomenon. Nature has always provided a virtually unlimited source of bioactive molecules, which have inspired the development of new drugs. NPs are characterized by an exceptional chemical and structural diversity, the result of millennia of evolutionary responses to various stimuli. Thanks to their favorable structural features and their enzymatic origin, they are naturally prone to bind proteins and exhibit bioactivities. Furthermore, their worldwide distribution and ease of accessibility has contributed to promote investigations on their activity. Overall, these characteristics make NPs excellent models for the design of novel therapeutics. This review offers a critical and comprehensive overview of the most promising NPs, isolated from plants, fungi, marine species, and bacteria, endowed with inhibitory properties against traditional and emerging mycobacterial enzymatic targets. A selection of 86 compounds is here discussed, with a special emphasis on their biological activity, structure-activity relationships, and mechanism of action. Our study corroborates the antimycobacterial potential of NPs, substantiating their relevance in future drug discovery and development efforts.


Assuntos
Antituberculosos/uso terapêutico , Produtos Biológicos/uso terapêutico , Descoberta de Drogas/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Antituberculosos/farmacologia , Produtos Biológicos/farmacologia , Humanos
19.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921864

RESUMO

This Special Issue of Pharmaceuticals is devoted to significant advances achieved in the field of antibacterial agents [...].

20.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668554

RESUMO

Tuberculosis (TB) causes millions of deaths every year, ranking as one of the most dangerous infectious diseases worldwide. Because several pathogenic strains of Mycobacterium tuberculosis (Mtb) have developed resistance against most of the established anti-TB drugs, new therapeutic options are urgently needed. An attractive target for the development of new antitubercular agents is the salicylate synthase MbtI, an essential enzyme for the mycobacterial siderophore biochemical machinery, absent in human cells. A set of analogues of I and II, two of the most potent MbtI inhibitors identified to date, was synthesized, characterized, and tested to elucidate the structural requirements for achieving an efficient MbtI inhibition and a potent antitubercular activity with this class of compounds. The structure-activity relationships (SAR) here discussed evidenced the importance of the furan as part of the pharmacophore and led to the preparation of six new compounds (IV-IX), which gave us the opportunity to examine a hitherto unexplored position of the phenyl ring. Among them emerged 5-(3-cyano-5-(trifluoromethyl)phenyl)furan-2-carboxylic acid (IV), endowed with comparable inhibitory properties to the previous leads, but a better antitubercular activity, which is a key issue in MbtI inhibitor research. Therefore, compound IV offers promising prospects for future studies on the development of novel agents against mycobacterial infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA