Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
2.
Cell Death Discov ; 9(1): 226, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407568

RESUMO

STAT3 and HIF1α are two fundamental transcription factors involved in many merging processes, like angiogenesis, metabolism, and cell differentiation. Notably, under pathological conditions, the two factors have been shown to interact genetically, but both the molecular mechanisms underlying such interactions and their relevance under physiological conditions remain unclear. In mouse embryonic stem cells (ESCs) we manage to determine the specific subset of hypoxia-induced genes that need STAT3 to be properly transcribed and, among them, fundamental genes like Vegfa, Hk1, Hk2, Pfkp and Hilpda are worth mentioning. Unexpectedly, we also demonstrated that the absence of STAT3 does not affect the expression of Hif1α mRNA nor the stabilization of HIF1α protein, but the STAT3-driven regulation of the hypoxia-dependent subset of gene could rely on the physical interaction between STAT3 and HIF1α. To further elucidate the physiological roles of this STAT3 non-canonical nuclear activity, we used a CRISPR/Cas9 zebrafish stat3 knock-out line. Notably, hypoxia-related fluorescence of the hypoxia zebrafish reporter line (HRE:mCherry) cannot be induced when Stat3 is not active and, while Stat3 Y705 phosphorylation seems to have a pivotal role in this process, S727 does not affect the Stat3-dependent hypoxia response. Hypoxia is fundamental for vascularization, angiogenesis and immune cells mobilization; all processes that, surprisingly, cannot be induced by low oxygen levels when Stat3 is genetically ablated. All in all, here we report the specific STAT3/HIF1α-dependent subset of genes in vitro and, for the first time with an in vivo model, we determined some of the physiological roles of STAT3-hypoxia crosstalk.

3.
Int J Mol Sci ; 24(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175941

RESUMO

A coordinated action between nuclear and mitochondrial activities is essential for a proper cellular response to genotoxic stress. Several nuclear transcription factors, including STAT3, translocate to mitochondria to exert mitochondrial function regulation; however, the role of mitochondrial STAT3 (mitoSTAT3) under stressed conditions is still poorly understood. In this study, we examined whether the stable expression of mitoSTAT3 wild-type or mutated at the conserved serine residue (Ser727), which is involved in the mitochondrial function of STAT3, can affect the DNA damage response to UVC radiation. To address this issue, we generated mammalian cells (NIH-3T3 and HCT-116 cells) stably transduced to express the mitochondrial-targeted Stat3 gene in its wild-type or Ser727 mutated forms. Our results show that cell proliferation is enhanced in mitoStat3-transduced cells under both non-stressed and stressed conditions. Once irradiated with UVC, cells expressing wild-type mitoSTAT3 showed the highest cell survival, which was associated with a significant decrease in cell death. Low levels of oxidative stress were detected in UVC-irradiated NIH-3T3 cells expressing mitoSTAT3 wild-type or serine-related dominant active form (Ser727D), confirming a role of mitochondrial STAT3 in minimizing oxidant cellular stress that provides an advantage for cell survival.


Assuntos
Mitocôndrias , Estresse Oxidativo , Camundongos , Animais , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proliferação de Células , Serina/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Mamíferos/metabolismo
4.
Biol Res ; 56(1): 19, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37106439

RESUMO

BACKGROUND: AMBRA1 is an intrinsically disordered protein, working as a scaffold molecule to coordinate, by protein-protein interaction, many cellular processes, including autophagy, mitophagy, apoptosis and cell cycle progression. The zebrafish genome contains two ambra1 paralogous genes (a and b), both involved in development and expressed at high levels in the gonads. Characterization of the zebrafish paralogous genes mutant lines generated by CRISPR/Cas9 approach showed that ambra1b knockout leads to an all-male population. RESULTS: We demonstrated that the silencing of the ambra1b gene determines a reduction of primordial germ cells (PGCs), a condition that, in the zebrafish, leads to the development of all-male progeny. PGC reduction was confirmed by knockdown experiments and rescued by injection of ambra1b and human AMBRA1 mRNAs, but not ambra1a mRNA. Moreover, PGC loss was not rescued by injection with human AMBRA1 mRNA mutated in the CUL4-DDB1 binding region, thus suggesting that interaction with this complex is involved in PGC protection from loss. Results from zebrafish embryos injected with murine Stat3 mRNA and stat3 morpholino suggest that Ambra1b could indirectly regulate this protein through CUL4-DDB1 interaction. According to this, Ambra1+/- mice showed a reduced Stat3 expression in the ovary together with a low number of antral follicles and an increase of atretic follicles, indicating a function of Ambra1 in the ovary of mammals as well. Moreover, in agreement with the high expression of these genes in the testis and ovary, we found significant impairment of the reproductive process and pathological alterations, including tumors, mainly limited to the gonads. CONCLUSIONS: By exploiting ambra1a and ambra1b knockout zebrafish lines, we prove the sub-functionalization between the two paralogous zebrafish genes and uncover a novel function of Ambra1 in the protection from excessive PGC loss, which seems to require binding with the CUL4-DDB1 complex. Both genes seem to play a role in the regulation of reproductive physiology.


Assuntos
Diferenciação Sexual , Peixe-Zebra , Animais , Feminino , Humanos , Masculino , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Germinativas/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Reprodução , RNA Mensageiro/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
5.
Biol. Res ; 56: 19-19, 2023. ilus, graf, tab
Artigo em Inglês | LILACS | ID: biblio-1439486

RESUMO

BACKGROUND: AMBRA1 is an intrinsically disordered protein, working as a scaffold molecule to coordinate, by protein-protein interaction, many cellular processes, including autophagy, mitophagy, apoptosis and cell cycle progression. The zebrafish genome contains two ambra1 paralogous genes (a and b), both involved in development and expressed at high levels in the gonads. Characterization of the zebrafish paralogous genes mutant lines generated by CRISPR/Cas9 approach showed that ambra1b knockout leads to an all-male population. RESULTS: We demonstrated that the silencing of the ambra1b gene determines a reduction of primordial germ cells (PGCs), a condition that, in the zebrafish, leads to the development of all-male progeny. PGC reduction was confirmed by knockdown experiments and rescued by injection of ambra1b and human AMBRA1 mRNAs, but not ambra1a mRNA. Moreover, PGC loss was not rescued by injection with human AMBRA1 mRNA mutated in the CUL4-DDB1 binding region, thus suggesting that interaction with this complex is involved in PGC protection from loss. Results from zebrafish embryos injected with murine Stat3 mRNA and stat3 morpholino suggest that Ambra1b could indirectly regulate this protein through CUL4-DDB1 interaction. According to this, Ambra1+/- mice showed a reduced Stat3 expression in the ovary together with a low number of antral follicles and an increase of atretic follicles, indicating a function of Ambra1 in the ovary of mammals as well. Moreover, in agreement with the high expression of these genes in the testis and ovary, we found significant impairment of the reproductive process and pathological alterations, including tumors, mainly limited to the gonads. CONCLUSIONS: By exploiting ambra1a and ambra1b knockout zebrafish lines, we prove the sub-functionalization between the two paralogous zebrafish genes and uncover a novel function of Ambra1 in the protection from excessive PGC loss, which seems to require binding with the CUL4-DDB1 complex. Both genes seem to play a role in the regulation of reproductive physiology.


Assuntos
Humanos , Animais , Masculino , Feminino , Camundongos , Diferenciação Sexual , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Reprodução , RNA Mensageiro/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Germinativas/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
6.
Development ; 148(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473253

RESUMO

The STAT3 transcription factor, acting both in the nucleus and mitochondria, maintains embryonic stem cell pluripotency and promotes their proliferation. In this work, using zebrafish, we determined in vivo that mitochondrial STAT3 regulates mtDNA transcription in embryonic and larval stem cell niches and that this activity affects their proliferation rates. As a result, we demonstrated that import of STAT3 inside mitochondria requires Y705 phosphorylation by Jak, whereas its mitochondrial transcriptional activity, as well as its effect on proliferation, depends on the MAPK target S727. These data were confirmed using mouse embryonic stem cells: although the Y705-mutated STAT3 cannot enter mitochondria, the S727 mutation does not affect import into the organelle and is responsible for STAT3-dependent mitochondrial transcription. Surprisingly, STAT3-dependent increase of mitochondrial transcription appears to be independent from STAT3 binding to STAT3-responsive elements. Finally, loss-of-function experiments, with chemical inhibition of the JAK/STAT3 pathway or genetic ablation of stat3 gene, demonstrated that STAT3 is also required for cell proliferation in the intestine of zebrafish.


Assuntos
Proliferação de Células , Células-Tronco Embrionárias/citologia , Mitocôndrias/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Sistema Nervoso Central/embriologia , DNA Mitocondrial/metabolismo , Embrião não Mamífero , Células-Tronco Embrionárias/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Intestinos/embriologia , Janus Quinases/metabolismo , Mutação , Fosforilação , Fator de Transcrição STAT3/genética , Transdução de Sinais , Transcrição Gênica , Ativação Transcricional , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
7.
Cell Death Dis ; 12(1): 100, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33469036

RESUMO

The DNA polymerase gamma (Polg) is a nuclear-encoded enzyme involved in DNA replication in animal mitochondria. In humans, mutations in the POLG gene underlie a set of mitochondrial diseases characterized by mitochondrial DNA (mtDNA) depletion or deletion and multiorgan defects, named POLG disorders, for which an effective therapy is still needed. By applying antisense strategies, ENU- and CRISPR/Cas9-based mutagenesis, we have generated embryonic, larval-lethal and adult-viable zebrafish Polg models. Morphological and functional characterizations detected a set of phenotypes remarkably associated to POLG disorders, including cardiac, skeletal muscle, hepatic and gonadal defects, as well as mitochondrial dysfunctions and, notably, a perturbed mitochondria-to-nucleus retrograde signaling (CREB and Hypoxia pathways). Next, taking advantage of preliminary evidence on the candidate molecule Clofilium tosylate (CLO), we tested CLO toxicity and then its efficacy in our zebrafish lines. Interestingly, at well tolerated doses, the CLO drug could successfully rescue mtDNA and Complex I respiratory activity to normal levels, even in mutant phenotypes worsened by treatment with Ethidium Bromide. In addition, the CLO drug could efficiently restore cardio-skeletal parameters and mitochondrial mass back to normal values. Altogether, these evidences point to zebrafish as a valuable vertebrate organism to faithfully phenocopy multiple defects detected in POLG patients. Moreover, this model represents an excellent platform to screen, at the whole-animal level, candidate molecules with therapeutic effects in POLG disorders.


Assuntos
Doenças Mitocondriais/genética , Compostos de Amônio Quaternário/metabolismo , Animais , Modelos Animais de Doenças , Fenótipo , Peixe-Zebra
8.
PeerJ ; 8: e8890, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32368416

RESUMO

Recognition memory is the capacity to recognize previously encountered objects, events or places. This ability is crucial for many fitness-related activities, and it appears very early in the development of several species. In the laboratory, recognition memory is most often investigated using the novel object recognition test (NORt), which exploits the tendency of most vertebrates to explore novel objects over familiar ones. Despite that the use of larval zebrafish is rapidly increasing in research on brain, cognition and neuropathologies, it is unknown whether larvae possess recognition memory and whether the NORt can be used to assess it. Here, we tested a NOR procedure in zebrafish larvae of 7-, 14- and 21-days post-fertilization (dpf) to investigate when recognition memory first appears during ontogeny. Overall, we found that larvae explored a novel stimulus longer than a familiar one. This response was fully significant only for 14-dpf larvae. A control experiment evidenced that larvae become neophobic at 21-dpf, which may explain the poor performance at this age. The preference for the novel stimulus was also affected by the type of stimulus, being significant with tri-dimensional objects varying in shape and bi-dimensional geometrical figures but not with objects differing in colour. Further analyses suggest that lack of effect for objects with different colours was due to spontaneous preference for one colour. This study highlights the presence of recognition memory in zebrafish larvae but also revealed non-cognitive factors that may hinder the application of NORt paradigms in the early developmental stages of zebrafish.

9.
Development ; 147(12)2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32467235

RESUMO

The transcription factor Stat3 is required for proliferation and pluripotency of embryonic stem cells; we have prepared and characterized fluorescent Stat3-reporter zebrafish based on repeats of minimal responsive elements. These transgenic lines mimic in vivo Stat3 expression patterns and are responsive to exogenous Stat3; notably, fluorescence is inhibited by both stat3 knockout and IL6/Jak/STAT inhibitors. At larval stages, Stat3 reporter activity correlates with proliferating regions of the brain, haematopoietic tissue and intestine. In the adult gut, the reporter is active in sparse proliferating cells, located at the base of intestinal folds, expressing the stemness marker sox9b and having the morphology of mammalian crypt base columnar cells; noteworthy, zebrafish stat3 mutants show defects in intestinal folding. Stat3 reporter activity in the gut is abolished with mutation of T cell factor 4 (Tcf7l2), the intestinal mediator of Wnt/ß-catenin-dependent transcription. The Wnt/ß-catenin dependence of Stat3 activity in the gut is confirmed by abrupt expansion of Stat3-positive cells in intestinal adenomas of apc heterozygotes. Our findings indicate that Jak/Stat3 signalling is needed for intestinal stem cell maintenance and possibly crucial in controlling Wnt/ß-catenin-dependent colorectal cancer cell proliferation.


Assuntos
Mucosa Intestinal/metabolismo , Fator de Transcrição STAT3/metabolismo , Via de Sinalização Wnt , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados/crescimento & desenvolvimento , Animais Geneticamente Modificados/metabolismo , Intestinos/crescimento & desenvolvimento , Intestinos/fisiologia , Janus Quinase 1 , Larva/crescimento & desenvolvimento , Larva/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Fatores de Transcrição SOX9/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/deficiência , Fator de Transcrição STAT3/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/deficiência , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética , beta Catenina/metabolismo
10.
Zebrafish ; 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32320344

RESUMO

In zebrafish, two paralogous genes, activating molecule in beclin-1 (BECN1)-regulated autophagy ambra1a and ambra1b, both required for the autophagic process and during development, encode the protein AMBRA1, a positive regulator of early steps of autophagosome formation. As transcripts for both genes are expressed during embryogenesis in the heart region, in this work, we investigated the effects of ambra1a and ambra1b knockdown on heart development by means of morpholino oligonucleotides (MOs). Silencing of the two proteins by MOs directed against the ATG translation initiation codon affects cardiac morphogenesis, resulting in a small, string-like heart with pericardial edema, whereas treatment with splice-blocking MOs does not lead to overt cardiac phenotypes, thus revealing the relevance of maternally supplied ambra1 transcripts for heart development. Co-injection of both ATG-MOs determines a more severe cardiac phenotype, with prominent pericardial edema. Whole-mount in situ hybridization (WMISH) for myosin light chain 7 (myl7), as well as ambra1 ATG-MO microinjection in zebrafish transgenic line expressing green fluorescent protein in the heart, revealed defects with the heart jogging process followed by imperfect cardiac looping. Moreover, WMISH of homeodomain transcription factor 2 isoform c (pitx2c) transcripts showed both bilateral and reversed pitx2c expression in morphants. The morphants' cardiac phenotypes were effectively rescued by co-injection of MOs with human AMBRA1 (hAMBRA1) messenger RNA (mRNA), pointing at the conservation of Ambra1 functions during evolution. Co-injections of ambra1 ATG-MOs with a hAMBRA1 mRNA mutated in the protein phosphatase 2a (PP2A) binding sites (hAMBRA1PXP) were not able to rescue the cardiac phenotypes, at the difference from wild-type hAMBRA1 mRNA, and treatment of zebrafish embryos with the specific PP2A inhibitor cantharidin resulted in similar developmental cardiac defects. These results suggest a critical role for AMBRA1 in vertebrate heart development, likely involving the binding site for the PP2A phosphatase.

11.
Nat Commun ; 10(1): 1533, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30948710

RESUMO

Autophagy-mediated degradation of mitochondria (mitophagy) is a key process in cellular quality control. Although mitophagy impairment is involved in several patho-physiological conditions, valuable methods to induce mitophagy with low toxicity in vivo are still lacking. Herein, we describe a new optogenetic tool to stimulate mitophagy, based on light-dependent recruitment of pro-autophagy protein AMBRA1 to mitochondrial surface. Upon illumination, AMBRA1-RFP-sspB is efficiently relocated from the cytosol to mitochondria, where it reversibly mediates mito-aggresome formation and reduction of mitochondrial mass. Finally, as a proof of concept of the biomedical relevance of this method, we induced mitophagy in an in vitro model of neurotoxicity, fully preventing cell death, as well as in human T lymphocytes and in zebrafish in vivo. Given the unique features of this tool, we think it may turn out to be very useful for a wide range of both therapeutic and research applications.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Mitofagia , Optogenética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células HEK293 , Células HeLa , Humanos , Linfócitos/citologia , Camundongos , Mitocôndrias/metabolismo , Peixe-Zebra
12.
Dis Model Mech ; 12(3)2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30833296

RESUMO

Mitochondrial DNA depletion syndromes (MDS) are a group of rare autosomal recessive disorders with early onset and no cure available. MDS are caused by mutations in nuclear genes involved in mitochondrial DNA (mtDNA) maintenance, and characterized by both a strong reduction in mtDNA content and severe mitochondrial defects in affected tissues. Mutations in MPV17, a nuclear gene encoding a mitochondrial inner membrane protein, have been associated with hepatocerebral forms of MDS. The zebrafish mpv17 null mutant lacks the guanine-based reflective skin cells named iridophores and represents a promising model to clarify the role of Mpv17. In this study, we characterized the mitochondrial phenotype of mpv17-/- larvae and found early and severe ultrastructural alterations in liver mitochondria, as well as significant impairment of the respiratory chain, leading to activation of the mitochondrial quality control. Our results provide evidence for zebrafish Mpv17 being essential for maintaining mitochondrial structure and functionality, while its effects on mtDNA copy number seem to be subordinate. Considering that a role in nucleotide availability had already been postulated for MPV17, that embryos blocked in pyrimidine synthesis do phenocopy mpv17-/- knockouts (KOs) and that mpv17-/- KOs have impaired Dihydroorotate dehydrogenase activity, we provided mpv17 mutants with the pyrimidine precursor orotic acid (OA). Treatment with OA, an easily available food supplement, significantly increased both iridophore number and mtDNA content in mpv17-/- mutants, thus linking the loss of Mpv17 to pyrimidine de novo synthesis and opening a new simple therapeutic approach for MPV17-related MDS.


Assuntos
Pleiotropia Genética , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Homologia de Sequência de Aminoácidos , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Vias Biossintéticas , DNA Mitocondrial/genética , Transporte de Elétrons , Dosagem de Genes , Humanos , Larva/genética , Larva/metabolismo , Fígado/metabolismo , Proteínas de Membrana/genética , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/genética , Mutação/genética , Nucleotídeos/metabolismo , Fenótipo , Pirimidinas/biossíntese , Estresse Fisiológico , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
13.
Autophagy ; 15(8): 1438-1454, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30806141

RESUMO

The EPG5 protein is a RAB7A effector involved in fusion specificity between autophagosomes and late endosomes or lysosomes during macroautophagy/autophagy. Mutations in the human EPG5 gene cause a rare and severe multisystem disorder called Vici syndrome. In this work, we show that zebrafish epg5-/- mutants from both heterozygous and incrossed homozygous matings are viable and can develop to the age of sexual maturity without conspicuous defects in external appearance. In agreement with the dysfunctional autophagy of Vici syndrome, western blot revealed higher levels of the Lc3-II autophagy marker in epg5-/- mutants with respect to wild type controls. Moreover, starvation elicited higher accumulation of Lc3-II in epg5-/- than in wild type larvae, together with a significant reduction of skeletal muscle birefringence. Accordingly, muscle ultrastructural analysis revealed accumulation of degradation-defective autolysosomes in starved epg5-/- mutants. By aging, epg5-/- mutants showed impaired motility and muscle thinning, together with accumulation of non-degradative autophagic vacuoles. Furthermore, epg5-/- adults displayed morphological alterations in gonads and heart. These findings point at the zebrafish epg5 mutant as a valuable model for EPG5-related disorders, thus providing a new tool for dissecting the contribution of EPG5 on the onset and progression of Vici syndrome as well as for the screening of autophagy-stimulating drugs. Abbreviations: ATG: autophagy related; cDNA: complementary DNA; DIG: digoxigenin; dpf: days post-fertilization; EGFP: enhanced green fluorescent protein; EPG: ectopic P granules; GFP: green fluorescent protein; hpf: hours post-fertilization; IL1B: interleukin 1 beta; Lc3-II: lipidated Lc3; mpf: months post-fertilization; mRNA: messenger RNA; NMD: nonsense-mediated mRNA decay; PCR: polymerase chain reaction; qPCR: real time-polymerase chain reaction; RAB7A/RAB7: RAB7a, member RAS oncogene family; RACE: rapid amplification of cDNA ends; RFP: red fluorescent protein; RT-PCR: reverse transcriptase-polymerase chain reaction; SEM: standard error of the mean; sgRNA: guide RNA; UTR: untranslated region; WMISH: whole mount in situ hybridization; WT: wild type.


Assuntos
Agenesia do Corpo Caloso/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Catarata/metabolismo , Técnicas de Inativação de Genes , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/química , Proteínas Relacionadas à Autofagia/genética , Sequência de Bases , Regulação da Expressão Gênica no Desenvolvimento , Células Caliciformes/patologia , Intestinos/patologia , Intestinos/ultraestrutura , Larva/ultraestrutura , Lisossomos/metabolismo , Fusão de Membrana , Modelos Biológicos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Mutagênese/genética , Mutação/genética , Especificidade de Órgãos , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética
14.
PLoS One ; 9(6): e99210, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24922546

RESUMO

The essential role of autophagy in muscle homeostasis has been clearly demonstrated by phenotype analysis of mice with muscle-specific inactivation of genes encoding autophagy-related proteins. Ambra1 is a key component of the Beclin 1 complex and, in zebrafish, it is encoded by two paralogous genes, ambra1a and ambra1b, both required for normal embryogenesis and larval development. In this study we focused on the function of Ambra1, a positive regulator of the autophagic process, during skeletal muscle development by means of morpholino (MO)-mediated knockdown and compared the phenotype of zebrafish Ambra1-depleted embryos with that of Ambra1gt/gt mouse embryos. Morphological analysis of zebrafish morphant embryos revealed that silencing of ambra1 impairs locomotor activity and muscle development, as well as myoD1 expression. Skeletal muscles in ATG-morphant embryos displayed severe histopathological changes and contained only small areas of organized myofibrils that were widely dispersed throughout the cell. Double knockdown of ambra1a and ambra1b resulted in a more severe phenotype whereas defects were much less evident in splice-morphants. The morphants phenotypes were effectively rescued by co-injection with human AMBRA1 mRNA. Together, these results indicate that ambra1a and ambra1b are required for the correct development and morphogenesis of skeletal muscle.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Técnicas de Silenciamento de Genes , Desenvolvimento Muscular/genética , Músculo Esquelético/embriologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Birrefringência , Proliferação de Células , Embrião não Mamífero/anormalidades , Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Camundongos , Morfolinos/farmacologia , Movimento , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/ultraestrutura , Músculo Esquelético/anormalidades , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Proteína MyoD/metabolismo , Miosinas/metabolismo , Fator de Transcrição PAX7/metabolismo , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA