Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Genes (Basel) ; 15(9)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39336793

RESUMO

This study aims to evaluate the in silico genomic characteristics of five species of the genus Planotetraspora: P. kaengkrachanensis, P. mira, P. phitsanulokensis, P. silvatica, and P. thailandica, with a view to their application in therapeutic research. The 16S rRNA comparison indicated that these species were phylogenetically distinct. Pairwise comparisons of digital DNA-DNA hybridization (dDDH) and OrthoANI values between these studied type strains indicated that dDDH values were below 62.5%, while OrthoANI values were lower than 95.3%, suggesting that the five species represent distinct genomospecies. These results were consistent with the phylogenomic study based on core genes and the pangenome analysis of these five species within the genus Planotetraspora. However, the genome annotation showed some differences between these species, such as variations in the number of subsystem category distributions across whole genomes (ranging between 1979 and 2024). Additionally, the number of CAZYme (Carbohydrate-Active enZYme) genes ranged between 298 and 325, highlighting the potential of these bacteria for therapeutic research applications. The in silico physico-chemical characteristics of cellulases from Planotetraspora species were analyzed. Their 3D structure was modeled, refined, and validated. A molecular docking analysis of this cellulase protein structural model was conducted with cellobiose, cellotetraose, laminaribiose, carboxymethyl cellulose, glucose, and xylose ligand. Our study revealed significant interaction between the Planotetraspora cellulase and cellotetraose substrate, evidenced by stable binding energies. This suggests that this bacterial enzyme holds great potential for utilizing cellotetraose as a substrate in various applications. This study enriches our understanding of the potential applications of Planotetraspora species in therapeutic research.


Assuntos
Celulases , Genoma Bacteriano , Filogenia , Celulases/genética , Celulases/metabolismo , RNA Ribossômico 16S/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biotecnologia , Genômica/métodos
2.
Artigo em Inglês | MEDLINE | ID: mdl-39037439

RESUMO

The species Rhizobium indigoferae and Sinorhizobium kummerowiae were isolated from legume nodules and the 16S rRNA sequences of their respective type strains, CCBAU 71042T and CCBAU 71714T, were highly divergent from those of the other species of the genera Rhizobium and Sinorhizobium, respectively. However, the 16S rRNA gene sequences obtained for strains CCBAU 71042T and CCBAU 71714T several years after description, were different from the original ones, showing 100 % similarity to the type strains of Rhizobium leguminosarum and Sinorhizobium meliloti, respectively. Phylogenetic analyses of two housekeeping genes, recA and atpD, confirmed the high phylogenetic closeness of strains CCBAU 71042T and CCBAU 71714T to the respective type strains of R. leguminosarum and S. meliloti. In the present work, we compared the genomes of the type strains of R. indigoferae and S. kummerowiae available in several culture collections with those of the respective type strains of R. leguminosarum and S. meliloti, some of them obtained in this study. The calculated average nucleotide identity-blast and digital DNA-DNA hybridization values in both cases were higher than those recommended for species differentiation, supporting the proposal for the reclassification of the type strains of R. indigoferae and S. kummerowiae into the species R. leguminosarum and S. meliloti, respectively.


Assuntos
Técnicas de Tipagem Bacteriana , DNA Bacteriano , Filogenia , RNA Ribossômico 16S , Rhizobium leguminosarum , Análise de Sequência de DNA , Sinorhizobium meliloti , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/classificação , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/classificação , Genoma Bacteriano , Rhizobium/classificação , Rhizobium/genética , Rhizobium/isolamento & purificação , Nódulos Radiculares de Plantas/microbiologia , Genes Essenciais , Genes Bacterianos , Hibridização de Ácido Nucleico
3.
Plants (Basel) ; 13(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38256729

RESUMO

The negative impacts of climate change on native forest ecosystems have created challenging conditions for the sustainability of natural forest regeneration. These challenges arise primarily from abiotic stresses that affect the early stages of forest tree development. While there is extensive evidence on the diversity of juvenile microbial symbioses in agricultural and fruit crops, there is a notable lack of reports on native forest plants. This review aims to summarize the critical studies conducted on the diversity of juvenile plant-microbe interactions in forest plants and to highlight the main benefits of beneficial microorganisms in overcoming environmental stresses such as drought, high and low temperatures, metal(loid) toxicity, nutrient deficiency, and salinity. The reviewed studies have consistently demonstrated the positive effects of juvenile plant-microbiota interactions and have highlighted the potential beneficial attributes to improve plantlet development. In addition, this review discusses the beneficial attributes of managing juvenile plant-microbiota symbiosis in the context of native forest restoration, including its impact on plant responses to phytopathogens, promotion of nutrient uptake, facilitation of seedling adaptation, resource exchange through shared hyphal networks, stimulation of native soil microbial communities, and modulation of gene and protein expression to enhance adaptation to adverse environmental conditions.

4.
Microbiol Resour Announc ; 12(6): e0025123, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37255460

RESUMO

The genus Sinorhizobium comprises rhizobia that fix nitrogen in symbiosis with legumes. To support taxonomic studies of this genus and of rhizobia more broadly, we report complete genome sequences and annotations for the species type strains Sinorhizobium garamanticum LMG 24692 and Sinorhizobium numidicum LMG 27395 and CIP 109850.

5.
Environ Geochem Health ; 45(12): 9321-9344, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36413266

RESUMO

The rapid expansion of degraded soil puts pressure on agricultural crop yield while also increasing the likelihood of food scarcity in the near future at the global level. The degraded soil does not suit plants growth owing to the alteration in biogeochemical cycles of nutrients, soil microbial diversity, soil organic matter, and increasing concentration of heavy metals and organic chemicals. Therefore, it is imperative that a solution should be found for such emerging issues in order to establish a sustainable future. In this context, the importance of plant growth-promoting rhizobacteria (PGPR) for their ability to reduce plant stress has been recognized. A direct and indirect mechanism in plant growth promotion is facilitated by PGPR via phytostimulation, biofertilizers, and biocontrol activities. However, plant stress mediated by deteriorated soil at the field level is not entirely addressed by the implementation of PGPR at the field level. Thus, emerging methods such as CRISPR and nanotechnological approaches along with PGPR could manage degraded soil effectively. In the pursuit of the critical gaps in this respect, the present review discusses the recent advancement in PGPR action when used along with nanomaterials and CRISPR, impacting plant growth under degraded soil, thereby opening a new horizon for researchers in this field to mitigate the challenges of degraded soil.


Assuntos
Metais Pesados , Solo , Microbiologia do Solo , Desenvolvimento Vegetal , Produtos Agrícolas
6.
Mol Biotechnol ; 65(3): 419-432, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35976558

RESUMO

An accurate profile of gene expression at a cellular level can contribute to a better understanding of biological processes and complexities involved in regulatory mechanism of woody plants. Laser microdissection is one technique that allows isolation of specific, target cells or tissue from a heterogeneous cell population. This technique entails microscopic visualization of the selected tissue and use a laser beam to separate the desired cells from surrounding tissue. Initial identification of these cells is made based on morphology and/or histological staining. Some works have been made in several tissues and plant models. However, there are few studies of laser microdissection application in woody species, particularly, lignified and suberized cells. Moreover, the presence of high level of suberin in cell walls can be a big challenge for the application of this approach. In our study it was developed a technique for tissue isolation, using laser microdissection of four different plant cell types (phellogen, lenticels, cortex and xylem) from woody tissues of cork oak (Quercus suber), followed by RNA extraction and RNA-Seq. We tested several methodologies regarding laser microdissection, cryostat equipments, fixation treatments, duration of single-cells collection and number of isolated cells by laser microdissection and RNA extraction procedures. A simple and efficient protocol for tissue isolation by laser microdissection and RNA purification was obtained, with a final method validation of RNA-Seq analysis. The optimized methodology combining RNA-Seq for expression analysis will contribute to elucidate the molecular pathways associated with different development processes of the xylem and phellem in oaks, including the lenticular channels formation.


Assuntos
Microdissecção , Quercus , RNA-Seq , Plantas/genética , Lasers , Quercus/genética , RNA de Plantas/genética
7.
Front Microbiol ; 13: 981507, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36274741

RESUMO

Endophytic fungi of crops can promote plant growth through various mechanisms of action (i.e., improve nutrient uptake and nutrient use efficiency, and produce and modulate plant hormones). The genus Brassica includes important horticultural crops, which have been little studied in their interaction with endophytic fungi. Previously, four endophytic fungi were isolated from kale roots (Brassica oleracea var. acephala), with different benefits for their host, including plant growth promotion, cold tolerance, and induction of resistance to pathogens (Xanthomonas campestris) and pests (Mamestra brassicae). In the present work, the molecular and morphological identification of the four different isolates were carried out, describing them as the species Acrocalymma vagum, Setophoma terrestris, Fusarium oxysporum, and the new species Pyrenophora gallaeciana. In addition, using a representative crop of each Brassica U's triangle species and various in vitro biochemical tests, the ability of these fungi to promote plant growth was described. In this sense, the four fungi used promoted the growth of B. rapa, B. napus, B. nigra, B. juncea, and B. carinata, possibly due to the production of auxins, siderophores, P solubilization or cellulase, xylanase or amylase activity. Finally, the differences in root colonization between the four endophytic fungi and two pathogens (Leptosphaeria maculans and Sclerotinia sclerotiorum) and the root glucosinolate profile were studied, at different times. In this way, how the presence of progoitrin in the roots reduces their colonization by endophytic and pathogenic fungi was determined, while the possible hydrolysis of sinigrin to fungicidal products controls the colonization of endophytic fungi, but not of pathogens.

8.
Pathogens ; 11(10)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36297235

RESUMO

Plant-parasitic nematodes (PPNs) are among the most notorious and underrated threats to food security and plant health worldwide, compromising crop yields and causing billions of dollars of losses annually. Chemical control strategies rely heavily on synthetic chemical nematicides to reduce PPN population densities, but their use is being progressively restricted due to environmental and human health concerns, so alternative control methods are urgently needed. Here, we review the potential of bacterial and fungal agents to suppress the most important PPNs, namely Aphelenchoides besseyi, Bursaphelenchus xylophilus, Ditylenchus dipsaci, Globodera spp., Heterodera spp., Meloidogyne spp., Nacobbus aberrans, Pratylenchus spp., Radopholus similis, Rotylenchulus reniformis, and Xiphinema index.

9.
Front Biosci (Landmark Ed) ; 26(10): 928-947, 2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34719216

RESUMO

Climate change, water scarcity, population growth, and food shortage are some of the threatening challenges being faced in today's world. Among different types of stresses, drought stress presents a persistent challenge for global food production, however, its harshness and intensity are supposed to expand in the imminent future. The most striking effects of drought stress on plants are stunted growth, severe damage to photosynthetic apparatus, reduction in photosynthesis, reduction in seed germination, and nutrient uptake. To deal with the destructive effect of drought stress on plants, it is necessary to consider its effects, mechanisms of action, the agronomic and genetic basis for sustainable management. Therefore, there is an urgent need for sustainable solutions to cope up with the negative impact of drought stress. This review focuses on the detrimental effects of drought stress on plants' morphological, physiological, and biochemical characteristics and recommends suitable drought management techniques to reduce the severity of drought stress. We summarize the effect of drought stress on physiological and biochemical parameters (such as germination, photosynthesis, biomass, water status, and nutrient uptake) and yield. Overall, in this article, we have reviewed the role of different phytohormones, osmolytes, exogenous compounds, proteins, plant growth-promoting microbes (PGPM), omics approaches, and genome editing technologies like clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (CRISPR-Cas9) in alleviating drought effects in plants. We also proposed that developing drought-tolerant plant varieties requires the combined use of biotechnological and agronomic approaches and cutting-edge genome editing (GE) tools.


Assuntos
Sistemas CRISPR-Cas , Secas , Edição de Genes , Plantas , Estresse Fisiológico
10.
Heliyon ; 7(10): e08142, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34693062

RESUMO

Soil microbial communities play a crucial role in soil fertility, sustainability, and plant health. However, intensive agriculture with increasing chemical inputs and changing environments have influenced native soil microbial communities. Approaches have been developed to study the structure, diversity, and activity of soil microbes to better understand the biology and plant-microbe interactions in soils. Unfortunately, a good understanding of soil microbial community remains a challenge due to the complexity of community composition, interactions of the soil environment, and limitations of technologies, especially related to the functionality of some taxa rarely detected using conventional techniques. Culture-based methods have been shown unable and sometimes are biased for assessing soil microbial communities. To gain further knowledge, culture-independent methods relying on direct analysis of nucleic acids, proteins, and lipids are worth exploring. In recent years, metagenomics, metaproteomics, metatranscriptomics, and proteogenomics have been increasingly used in studying microbial ecology. In this review, we examined the importance of microbial community to soil quality, the mystery of rhizosphere and plant-microbe interactions, and the biodiversity and multi-trophic interactions that influence the soil structure and functionality. The impact of the cropping system and climate change on the soil microbial community was also explored. Importantly, progresses in molecular biology, especially in the development of high-throughput biotechnological tools, were extensively assessed for potential uses to decipher the diversity and dynamics of soil microbial communities, with the highlighted advantages/limitations.

12.
Biology (Basel) ; 10(3)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33801829

RESUMO

Higher plants are composed of different tissue and cell types. Distinct cells host different biochemical and physiological processes which is reflected in differences in gene expression profiles, protein and metabolite levels. When omics are to be carried out, the information provided by a specific cell type can be diluted and/or masked when using a mixture of distinct cells. Thus, studies performed at the cell- and tissue-type level are gaining increasing interest. Laser microdissection (LM) technology has been used to isolate specific tissue and cell types. However, this technology faces some challenges depending on the plant species and tissue type under analysis. Here, we show for the first time a LM protocol that proved to be efficient for harvesting specific tissue types (phloem, cortex and epidermis) from olive stem nodal segments and obtaining RNA of high quality. This is important for future transcriptomic studies to identify rooting-competent cells. Here, nodal segments were flash-frozen in liquid nitrogen-cooled isopentane and cryosectioned. Albeit the lack of any fixatives used to preserve samples' anatomy, cryosectioned sections showed tissues with high morphological integrity which was comparable with that obtained with the paraffin-embedding method. Cells from the phloem, cortex and epidermis could be easily distinguished and efficiently harvested by LM. Total RNA isolated from these tissues exhibited high quality with RNA Quality Numbers (determined by a Fragment Analyzer System) ranging between 8.1 and 9.9. This work presents a simple, rapid and efficient LM procedure for harvesting specific tissue types of olive stems and obtaining high-quality RNA.

13.
Int J Syst Evol Microbiol ; 70(10): 5512-5519, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32910749

RESUMO

A bacterial strain designated as RZME10T was isolated from a Zea mays L. root collected in Spain. Results of analysis of the 16S rRNA gene sequence showed that this strain belongs to the genus Agrobacterium with Agrobacterium larrymoorei ATCC 51759T being the most closely related species with 99.9 % sequence similarity. The similarity values of the rpoB, recA, gyrB, atpD and glnII genes between strain RZME10T and A. larrymoorei ATCC 51759T were 93.5, 90.0, 88.7, 87.9 and 90.1 %, respectively. The estimated average nucleotide identity using blast and digital DNA-DNA hybridization values between these two strains were 80.4 and 30.2 %, respectively. The major fatty acids of strain RZME10T are those from summed feature 8 (C18 : 1 ω6c/C18 : 1 ω7c) and C16 : 0. Pathogenicity tests on tomato and carrot roots showed that strain RZME10T was not able to induce plant tumours. Based on the results of genomic, chemotaxonomic and phenotypic analyses, we propose that strain RZME10T represents a novel species named Agrobacterium cavarae sp. nov. (type strain RZME10T=CECT 9795T=LMG 31257T).


Assuntos
Agrobacterium/classificação , Filogenia , Raízes de Plantas/microbiologia , Zea mays/microbiologia , Agrobacterium/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espanha
14.
Microorganisms ; 8(6)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580505

RESUMO

In the present work, we analyse the genomic and phenotypic characteristics of a strain named RZME27T isolated from roots of a Zea mays plant grown in Spain. The phylogenetic analyses of 16S rRNA gene and whole genome sequences showed that the strain RZME27T clustered with the type strains of Neorhizobium galegae and Pseudorhizobium pelagicum from the family Rhizobiaceae. This family encompasses several genera establishing symbiosis with legumes, but the genes involved in nodulation and nitrogen fixation are absent in its genome. Nevertheless, genes related to plant colonization, such as those involved in motility, chemotaxis, quorum sensing, exopolysaccharide biosynthesis and hydrolytic enzymes production were found. The comparative pangenomic analyses showed that 78 protein clusters present in the strain RZME27T were not found in the type strains of its closest relatives N. galegae and P. pelagicum. The calculated average nucleotide identity (ANI) values between the strain RZME27T and the type strains of N. galegae and P. pelagicum were 75.61% and 75.1%, respectively, similar or lower than those found for other genera from family Rhizobiaceae. Several phenotypic differences were also found, highlighting the absence of the fatty acid C19:0 cyclo ω8c and propionate assimilation. These results support the definition of a novel genus and species named Endobacterium cerealis gen. nov. sp. nov. whose type strain is RZME27T.

15.
Life (Basel) ; 10(3)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178383

RESUMO

The overgrowth of human population and the demand for high-quality foods necessitate the search for sustainable alternatives to increase crop production. The use of biofertilizers, mostly based on plant probiotic bacteria (PPB), represents a reliable and eco-friendly solution. This heterogeneous group of bacteria possesses many features with positive effects on plants; however, how these bacteria with each other and with the environment when released into a field has still barely been studied. In this review, we focused on the diversity of root endophytic rhizobial and non-rhizobial bacteria existing within plant root tissues, and also on their potential applications as consortia exerting benefits for plants and the environment. We demonstrated the benefits of using bacterial inoculant consortia instead of single-strain inoculants. We then critically discussed several considerations that farmers, companies, governments, and the scientific community should take into account when a biofertilizer based on those PPBs is proposed, including (i) a proper taxonomic identification, (ii) the characterization of the beneficial features of PPB strains, and (iii) the ecological impacts on plants, environment, and plant/soil microbiomes. Overall, the success of a PPB consortium depends on many factors that must be considered and analyzed before its application as a biofertilizer in an agricultural system.

16.
Microorganisms ; 8(3)2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32183288

RESUMO

Mesorhizobium contains species widely known as nitrogen-fixing bacteria with legumes, but their ability to promote the growth of non-legumes has been poorly studied. Here, we analyzed the production of indole acetic acid (IAA), siderophores and the solubilization of phosphate and potassium in a collection of 24 strains belonging to different Mesorhizobium species. All these strains produce IAA, 46% solubilized potassium, 33% solubilize phosphate and 17% produce siderophores. The highest production of IAA was found in the strains Mesorhizobium ciceri CCANP14 and Mesorhizobium tamadayense CCANP122, which were also able to solubilize potassium. Moreover, the strain CCANP14 showed the maximum phosphate solubilization index, and the strain CCANP122 was able to produce siderophores. These two strains were able to produce cellulases and cellulose and to originate biofilms in abiotic surfaces and tomato root surface. Tomato seedlings responded positively to the inoculation with these two strains, showing significantly higher plant growth traits than uninoculated seedlings. This is the first report about the potential of different Mesorhizobium species to promote the growth of a vegetable. Considering their use as safe for humans, animals and plants, they are an environmentally friendly alternative to chemical fertilizers for non-legume crops in the framework of sustainable agriculture.

17.
Syst Appl Microbiol ; 43(1): 126046, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31818496

RESUMO

The genus Agrobacterium was created a century ago by Conn who included it in the family Rhizobiaceae together with the genus Rhizobium. Initially, the genus Agrobacterium contained the non-pathogenic species Agrobacterium radiobacter and the plant pathogenic species Agrobacterium tumefaciens and Agrobacterium rhizogenes. At the end of the past century two new pathogenic species, Agrobacterium rubi and Agrobacterium vitis, were added to the genus. Already in the present century these species plus Agrobacterium larrymoorei were reclassified into genus Rhizobium. This reclassification was controversial and for a time both genus names were used when new species were described. Few years ago, after a taxonomic revision based on genomic data, the old species A. rhizogenes was maintained in the genus Rhizobium, the old species A. vitis was transferred to the genus Allorhizobium and several Rhizobium species were transferred to the genus Agrobacterium, which currently contains 14 species including the old species A. radiobacter, A. tumefaciens, A. rubi and A. larrymoorei. Most of these species are able to produce tumours in different plants, nevertheless the genus Agrobacterium also encompasses non-pathogenic species, one species able to nodulate legumes and one human pathogenic species. Taking into account that the species affiliations to five Agrobacterium genomospecies have not been determined yet, an increase in the number of species within this genus is expected in the near future.


Assuntos
Agrobacterium/classificação , Filogenia , Agrobacterium/genética , DNA Bacteriano/genética , Genes Bacterianos/genética , Genes Essenciais/genética , Genoma Bacteriano/genética , Humanos , Rhizobiaceae/classificação , Rhizobiaceae/genética , Rhizobium/classificação , Rhizobium/genética
18.
Microorganisms ; 7(10)2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557944

RESUMO

Bacterial endophytes, a subset of a plant's microbiota, can facilitate plant growth by a number of different mechanisms. The aims of this study were to assess the diversity and functionality of endophytic bacterial strains from internal root tissues of native legume species grown in two distinct sites in South of Portugal and to evaluate their ability to promote plant growth. Here, 122 endophytic bacterial isolates were obtained from 12 different native legume species. Most of these bacteria possess at least one of the plant growth-promoting features tested in vitro, with indole acetic acid production being the most common feature among the isolates followed by the production of siderophores and inorganic phosphate solubilization. The results of in planta experiments revealed that co-inoculation of chickpea plants with specific endophytic bacteria along with N2-fixing symbionts significantly improved the total biomass of chickpea plants, in particular when these plants were grown under saline conditions. Altogether, this study revealed that Mediterranean native legume species are a reservoir of plant growth-promoting bacteria, that are also tolerant to salinity and to toxic levels of Mn. Thus, these bacterial endophytes are well adapted to common constraints present in soils of this region which constitutes important factors to consider in the development of bacterial inoculants for stressful conditions in the Mediterranean region.

19.
Sci Rep ; 9(1): 11033, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31363104

RESUMO

Melinis minutiflora is an invasive species that threatens the biodiversity of the endemic vegetation of the campo rupestre biome in Brazil, displacing the native vegetation and favouring fire spread. As M. minutiflora invasion has been associated with a high nitrogen (N) demand, we assessed changes in N cycle under four treatments: two treatments with contrasting invasion levels (above and below 50%) and two un-invaded control treatments with native vegetation, in the presence or absence of the leguminous species Periandra mediterranea. This latter species was considered to be the main N source in this site due to its ability to fix N2 in association with Bradyrhizobia species. Soil proteolytic activity was high in treatments with P. mediterranea and in those severely invaded, but not in the first steps of invasion. While ammonium was the N-chemical species dominant in plots with native species, including P.mediterranea, soil nitrate prevailed only in fully invaded plots due to the stimulation of the nitrifying bacterial (AOB) and archaeal (AOA) populations carrying the amoA gene. However, in the presence of P. mediterranea, either in the beginning of the invasion or in uninvaded plots, we observed an inhibition of the nitrifying microbial populations and nitrate formation, suggesting that this is a biotic resistance strategy elicited by P. mediterranea to compete with M. minutiflora. Therefore, the inhibition of proteolytic activity and the nitrification process were the strategies elicited by P.mediterranea to constrain M.munitiflora invasion.


Assuntos
Fabaceae/metabolismo , Espécies Introduzidas , Fixação de Nitrogênio , Poaceae/fisiologia , Solo/química , Archaea/metabolismo , Bactérias/metabolismo , Fabaceae/microbiologia , Fabaceae/fisiologia , Nitrificação
20.
Plants (Basel) ; 8(2)2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30769814

RESUMO

The aims of this study were to isolate, identify and characterize culturable endophytic bacteria from chickpea (Cicer arietinum L.) roots grown in different soils. In addition, the effects of rhizobial inoculation, soil and stress on the functionality of those culturable endophytic bacterial communities were also investigated. Phylogenetic analysis based on partial 16S rRNA gene sequences revealed that the endophytic bacteria isolated in this work belong to the phyla Proteobacteria, Firmicutes and Actinobacteria, with Enterobacter and Pseudomonas being the most frequently observed genera. Production of indoleacetic acid and ammonia were the most widespread plant growth-promoting features, while antifungal activity was relatively rare among the isolates. Despite the fact that the majority of bacterial endophytes were salt- and Mn-tolerant, the isolates obtained from soil with Mn toxicity were generally more Mn-tolerant than those obtained from the same soil amended with dolomitic limestone. Several associations between an isolate's genus and specific plant growth-promoting mechanisms were observed. The data suggest that soil strongly impacts the Mn tolerance of endophytic bacterial communities present in chickpea roots while rhizobial inoculation induces significant changes in terms of isolates' plant growth-promoting abilities. In addition, this study also revealed chickpea-associated endophytic bacteria that could be exploited as sources with potential application in agriculture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA