Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ERJ Open Res ; 9(3)2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37228270

RESUMO

Rationale: Post-coronavirus disease 2019 (COVID-19) survivors frequently have dyspnoea that can lead to exercise intolerance and lower quality of life. Despite recent advances, the pathophysiological mechanisms of exercise intolerance in the post-COVID-19 patients remain incompletely characterised. The objectives of the present study were to clarify the mechanisms of exercise intolerance in post-COVID-19 survivors after hospitalisation. Methods: This prospective study evaluated consecutive patients previously hospitalised due to moderate-to-severe/critical COVID-19. Within mean±sd 90±10 days of onset of acute COVID-19 symptoms, patients underwent a comprehensive cardiopulmonary assessment, including cardiopulmonary exercise testing with earlobe arterialised capillary blood gas analysis. Measurements and main results: 87 patients were evaluated; mean±sd peak oxygen consumption was 19.5±5.0 mL·kg-1·min-1, and the tertiles were ≤17.0, 17.1-22.2 and ≥22.3 mL·kg-1·min-1. Hospitalisation severity was similar among the three groups; however, at the follow-up visit, patients with peak oxygen consumption ≤17.0 mL·kg-1·min-1 reported a greater sensation of dyspnoea, along with indices of impaired pulmonary function, and abnormal ventilatory, gas-exchange and metabolic responses during exercise compared to patients with peak oxygen consumption >17 mL·kg-1·min-1. By multivariate logistic regression analysis (receiver operating characteristic curve analysis) adjusted for age, sex and prior pulmonary embolism, a peak dead space fraction of tidal volume ≥29 and a resting forced vital capacity ≤80% predicted were independent predictors of reduced peak oxygen consumption. Conclusions: Exercise intolerance in the post-COVID-19 survivors was related to a high dead space fraction of tidal volume at peak exercise and a decreased resting forced vital capacity, suggesting that both pulmonary microcirculation injury and ventilatory impairment could influence aerobic capacity in this patient population.

2.
Front Physiol ; 13: 963881, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36171971

RESUMO

Pulmonary arterial hypertension is an incurable disease marked by dysregulated metabolism, both at the cellular level in the pulmonary vasculature, and at the whole-body level characterized by impaired exercise oxygen consumption. Though both altered pulmonary vascular metabolism and abnormal exercise physiology are key markers of disease severity and pulmonary arterial remodeling, their precise interactions are relatively unknown. Herein we review normal pulmonary vascular physiology and the current understanding of pulmonary vascular cell metabolism and cardiopulmonary response to exercise in Pulmonary arterial hypertension. We additionally introduce a newly developed international collaborative effort aimed at quantifying exercise-induced changes in pulmonary vascular metabolism, which will inform about underlying pathophysiology and clinical management. We support our investigative approach by presenting preliminary data and discuss potential future applications of our research platform.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA