Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 24(24): 6442-6457, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29479746

RESUMO

Potentiometric speciation studies, mass spectrometry, and DFT calculations helped to predict the various structural possibilities of the dinuclear trivalent lanthanide ion (LnIII , Ln=La, Eu, Tb, Yb, Y) complexes of a novel macrocyclic ligand, m-ODO2A-dimer (H4 L), to correlate with their luminescence properties and the promoted BNPP and HPNP phosphodiester bond hydrolysis reaction rates. The stability constants of the dinuclear Ln2 (m-ODO2A-dimer) complexes and various hydrolytic species confirmed by mass spectrometry were determined. DFT calculations revealed that the Y2 LH-1 and the Y2 LH-2 species tended to form structures with the respective closed- and open-form conformations. Luminescence lifetime data for the heterodimetallic TbEuL system confirmed the fluorescence resonance energy transfer from the TbIII to EuIII ion. The internuclear distance RTbEu values were estimated to be in the range of 9.4-11.3 Š(pH 6.7-10.6), which were comparable to those of the DFT calculated open-form conformations. Multiple linear regression analysis of the kobs data was performed using the equation: kobs,corr. =kobs -kobs,OH =kLn2LHM->1 [Ln2 LH-1 ]+kLn2LH-2 [Ln2 LH-2 ] for the observed Ln2 L-promoted BNPP/HPNP hydrolysis reactions in solution pH from 7 to 10.5 (Ln=Eu, Yb). The results showed that the second-order rate constants for the Eu2 LH-2 and Yb2 LH-2 species were about 50-400 times more reactive than the structural analogous Zn2 (m-12 N3 O-dimer) system.

2.
Dalton Trans ; 41(48): 14697-706, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23073230

RESUMO

The trivalent lanthanide complex formation constants (log K(f)) of the macrocyclic ligand H(2)ODO2A (4,10-dicarboxymethyl-1-oxa-4,7,10-triazacyclododecane) have been determined by pH titration techniques to be in the range 10.84-12.62 which increase with increasing lanthanide atomic number, and are smaller than those of the corresponding H(2)DO2A (1,7-dicarboxylmethyl-1,4,7,10-tetraazacyclododecane) complexes. The equilibrium formation of the dinuclear hydrolysis species, e.g. Ln(2)(ODO2A)(2)(µ-OH)(+) and Ln(2)(ODO2A)(2)(µ-OH)(2), dominates over the mononuclear species, e.g. LnODO2A(OH) and LnODO2A(OH)(2)(-). Mass spectrometry confirmed the presence of [Eu(ODO2A)](+), [Eu(ODO2A)(OH)+H](+), [Eu(2)(ODO2A)(2)(OH(2))(2)+H](+), [Eu(ODO2A)(OH)(2)](-) and [Eu(2)(ODO2A)(2)(OH(2))(3)](-) species at pH > 7. Density function theory (DFT) calculated structures of the EuODO2A(H(2)O)(3)(+) and EuDO2A(H(2)O)(3)(+) complexes indicate that three inner-sphere coordinated water molecules are arranged in a meridional configuration, i.e. the 3 water molecules are on the same plane perpendicular to that of the basal N(3)O or N(4) atoms. However, luminescence lifetime studies reveal that the EuODO2A(+) and TbODO2A(+) complexes have 4.1 and 2.9 inner-sphere coordinated water molecules, respectively, indicating that other equilibrium species are also present for the EuODO2A(+) complex. The respective emission spectral intensities and lifetimes at 615 nm (λ(ex) = 395 nm) and 544 nm (λ(ex) = 369 nm) of the EuODO2A(+) and TbODO2A(+) complexes increase with increasing pH, consistent with the formation of µ-OH-bridged dinuclear species at higher pH. Additional DFT calculations show that each Y(iii) ion is 8-coordinated in the three possible cis-[Y(2)(ODO2A)(2)(µ-OH)(H(2)O)(2)](+), trans-[Y(2)(ODO2A)(2)(µ-OH)(H(2)O)(2)](+) and [Y(2)(ODO2A)(2)(µ-OH)(2)] dinuclear complex structures. The first and the second include 6-coordination by the ligand ODO2A(2-), one by the bridged µ-OH ion and one by a water molecule. The third includes 6-coordination by the ligand ODO2A(2-) and two by the bridged µ-OH ions. The two inner-sphere coordinated water molecules in the cis- and trans-[Y(2)(ODO2A)(2)(µ-OH)(H(2)O)(2)](+) dinuclear complexes are in a staggered conformation with torsional angles of 82.21° and 148.54°, respectively.


Assuntos
Compostos Aza/química , Complexos de Coordenação/química , Elementos da Série dos Lantanídeos/química , Compostos Aza/síntese química , Complexos de Coordenação/síntese química , Concentração de Íons de Hidrogênio , Hidrólise , Ligantes , Compostos Macrocíclicos/química , Espectrometria de Massas , Espectrometria de Fluorescência , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA