Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Micron ; 39(3): 280-6, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17698363

RESUMO

The presence of nano-scale lamellae of the alpha-PbO2-type polymorph of TiO2 sandwiched between twinned rutile inclusions in jadeite has been confirmed by electron diffraction and high-resolution transmission electron microscopy, backed up by image simulation techniques, from ultrahigh-pressure jadeite quartzite at Shuanghe in the Dabie Mountains, China. The crystal structure is orthorhombic with lattice parameters a=4.58 A, b=5.42 A, c=5.02 A and space group Pbcn. A three-dimensional structural model has been constructed for the rutile to alpha-PbO2-type TiO2 phase transformation based on high-resolution electron microscopic images. Computer image simulation and structural model analysis reveal that rutile {011}R twin interface is a basic structural unit of alpha-PbO2-type TiO2. Nucleation of alpha-PbO2-type TiO2 lamellae 1-2 nm thick is caused by the displacement of one half of the titanium cations within the {011}R twin slab. This displacement reduces the Ti-O-Ti distance and is favored by high pressure.

2.
Micron ; 35(6): 441-5, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15120128

RESUMO

According to the HRTEM study, the UHP jadeite-quartzite mineral (Rutile, TiO(2)) in Anhui Province, Dabie Mountains, China, has ultrastructures such as 011 two-dimensional commensurable modulated structures or superstructures, [011] twin domain structures, dislocations and crystal deformations. The SAED patterns and HRTEM images indicate the existence of the deformations and stacking faults on the interface of [011] twin crystal of rutile and its two-dimensional commensurate modulated structures with repetition period 0.753 nm (3d(011)) has tetragonal symmetry, cell parameters a = 3a0 = 1.377 nm (a0 = 0.459 nm), c = c0 = 0.3 nm. The modulated structures of rutile were probably caused by the isomorphic replacement of Ti(4+) and position modulation or occupation modulation of oxygen atoms in different degree; the deformation structures reveal that during the process of crystallization and mineralization, this mineral may be affected by the geological environment (such as temperature, pressure and stress), metamorphism and deformation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA