Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.429
Filtrar
1.
Sci Rep ; 14(1): 18931, 2024 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-39147803

RESUMO

We aimed to build a deep learning-based pathomics model to predict the early recurrence of non-muscle-infiltrating bladder cancer (NMIBC) in this work. A total of 147 patients from Xuzhou Central Hospital were enrolled as the training cohort, and 63 patients from Suqian Affiliated Hospital of Xuzhou Medical University were enrolled as the test cohort. Based on two consecutive phases of patch level prediction and WSI-level predictione, we built a pathomics model, with the initial model developed in the training cohort and subjected to transfer learning, and then the test cohort was validated for generalization. The features extracted from the visualization model were used for model interpretation. After migration learning, the area under the receiver operating characteristic curve for the deep learning-based pathomics model in the test cohort was 0.860 (95% CI 0.752-0.969), with good agreement between the migration training cohort and the test cohort in predicting recurrence, and the predicted values matched well with the observed values, with p values of 0.667766 and 0.140233 for the Hosmer-Lemeshow test, respectively. The good clinical application was observed using a decision curve analysis method. We developed a deep learning-based pathomics model showed promising performance in predicting recurrence within one year in NMIBC patients. Including 10 state prediction NMIBC recurrence group pathology features be visualized, which may be used to facilitate personalized management of NMIBC patients to avoid ineffective or unnecessary treatment for the benefit of patients.


Assuntos
Aprendizado Profundo , Recidiva Local de Neoplasia , Neoplasias não Músculo Invasivas da Bexiga , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/epidemiologia , Recidiva Local de Neoplasia/patologia , Neoplasias não Músculo Invasivas da Bexiga/patologia , Curva ROC , Medição de Risco/métodos
2.
World J Gastroenterol ; 30(29): 3511-3533, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39156500

RESUMO

BACKGROUND: Calculus bovis (CB), used in traditional Chinese medicine, exhibits anti-tumor effects in various cancer models. It also constitutes an integral component of a compound formulation known as Pien Tze Huang, which is indicated for the treatment of liver cancer. However, its impact on the liver cancer tumor microenvironment, particularly on tumor-associated macrophages (TAMs), is not well understood. AIM: To elucidate the anti-liver cancer effect of CB by inhibiting M2-TAM polarization via Wnt/ß-catenin pathway modulation. METHODS: This study identified the active components of CB using UPLC-Q-TOF-MS, evaluated its anti-neoplastic effects in a nude mouse model, and elucidated the underlying mechanisms via network pharmacology, transcriptomics, and molecular docking. In vitro assays were used to investigate the effects of CB-containing serum on HepG2 cells and M2-TAMs, and Wnt pathway modulation was validated by real-time reverse transcriptase-polymerase chain reaction and Western blot analysis. RESULTS: This study identified 22 active components in CB, 11 of which were detected in the bloodstream. Preclinical investigations have demonstrated the ability of CB to effectively inhibit liver tumor growth. An integrated approach employing network pharmacology, transcriptomics, and molecular docking implicated the Wnt signaling pathway as a target of the antineoplastic activity of CB by suppressing M2-TAM polarization. In vitro and in vivo experiments further confirmed that CB significantly hinders M2-TAM polarization and suppresses Wnt/ß-catenin pathway activation. The inhibitory effect of CB on M2-TAMs was reversed when treated with the Wnt agonist SKL2001, confirming its pathway specificity. CONCLUSION: This study demonstrated that CB mediates inhibition of M2-TAM polarization through the Wnt/ß-catenin pathway, contributing to the suppression of liver cancer growth.


Assuntos
Neoplasias Hepáticas , Camundongos Nus , Simulação de Acoplamento Molecular , Microambiente Tumoral , Macrófagos Associados a Tumor , Via de Sinalização Wnt , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Humanos , Camundongos , Células Hep G2 , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Masculino , Farmacologia em Rede , beta Catenina/metabolismo , Medicina Tradicional Chinesa/métodos
3.
Int J Nanomedicine ; 19: 7817-7830, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39099790

RESUMO

Background: Photothermal therapy (PTT) guided by photoacoustic imaging (PAI) using nanoplatforms has emerged as a promising strategy for cancer treatment due to its efficiency and accuracy. This study aimed to develop and synthesize novel second near-infrared region (NIR-II) absorption-conjugated polymer acceptor acrylate-substituted thiadiazoloquinoxaline-diketopyrrolopyrrole polymers (PATQ-DPP) designed specifically as photothermal and imaging contrast agents for nasopharyngeal carcinoma (NPC). Methods: The PATQ-DPP nanoparticles were synthesized and characterized for their optical properties, including low optical band gaps. Their potential as PTT agents and imaging contrast agents for NPC was evaluated both in vitro and in vivo. The accumulation of nanoparticles at tumor sites was assessed post-injection, and the efficacy of PTT under near-infrared laser irradiation was investigated in a mouse model of NPC. Results: Experimental results indicated that the PATQ-DPP nanoparticles exhibited significant photoacoustic contrast enhancement and favorable PTT performance. Safety and non-toxicity evaluations confirmed the biocompatibility of these nanoparticles. In vivo studies showed that PATQ-DPP nanoparticles effectively accumulated at NPC tumor sites and demonstrated excellent tumor growth inhibition upon exposure to near-infrared laser irradiation. Notably, complete elimination of nasopharyngeal tumors was observed within 18 days following PTT. Discussion: The findings suggest that PATQ-DPP nanoparticles are a promising theranostic agent for NIR-II PAI and PTT of tumors. This innovative approach utilizing PATQ-DPP nanoparticles provides a powerful tool for the early diagnosis and precise treatment of NPC, offering a new avenue in the management of this challenging malignancy.


Assuntos
Nanopartículas , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Técnicas Fotoacústicas , Terapia Fototérmica , Animais , Técnicas Fotoacústicas/métodos , Neoplasias Nasofaríngeas/terapia , Neoplasias Nasofaríngeas/diagnóstico por imagem , Terapia Fototérmica/métodos , Camundongos , Linhagem Celular Tumoral , Humanos , Carcinoma Nasofaríngeo/terapia , Carcinoma Nasofaríngeo/diagnóstico por imagem , Nanopartículas/química , Raios Infravermelhos , Camundongos Nus , Meios de Contraste/química , Camundongos Endogâmicos BALB C , Polímeros/química , Feminino
4.
Food Chem X ; 23: 101637, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39108628

RESUMO

The effects of dry-salted and salt-fermented processing on the physicochemical characteristics and microbial communities of Yacai were systematically investigated. The results showed that the contents of total acid, amino acid nitrogen (AAN) and nitrite in the final products of dry-salted Yacai were greater than those in salt-fermented Yacai. Lactic acid was the dominant organic acid in the two types of Yacai. Dry-salted processing is more conducive to forming a high-quality reddish-brown color. During whole pickling process, the microbial diversity of dry-salted Yacai was higher than that of salt-fermented Yacai, particularly in the early and middle stages of fermentation. For dry-salted Yacai, 8 bacteria (Natribacillus, Chromohalobacter, Marinococcus, Lentibacillus, Nesterenkonia, Gracilibacillus, Oceanobacillus and Tetragenococcus) and 1 fungus (Zygosaccharomyces) showed a significant positive correlation with AAN. For salt-fermented Yacai, 8 bacteria (Gracilibacillus, Alkalibacillus, Oceanobacillus, Virgibacillus, Lentibacillus, Salibacterium, Chromohalobacter and Tetragenococcus) and 3 fungi (Zygosaccharomyces, Millerozyma, and Wickerhamomyces) exhibited significant positive correlations with AAN.

5.
Bioorg Chem ; 151: 107686, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39111120

RESUMO

A series of novel quinazoline-derived EGFR/HER-2 dual-target inhibitors were designed and synthesized by heterocyclic-containing tail approach. The inhibitory activities against four human epidermal growth factor receptor (HER) isozymes (EGFR, HER-2, HER-3 and HER-4) of all new compounds so designed were investigated in vitro. Compound 12k was found to be the most effective and rather selective dual-target inhibitor of EGFR and HER-2 with inhibitory constant (IC50) values of 6.15 and 9.78 nM, respectively, which was more potent than the clinical used agent Lapatinib (IC50 = 8.41 and 9.41 nM). Meanwhile, almost all compounds showed excellent antiproliferative activities against four cancer cell models (A549, NCI-H1975, SK-BR-3 and MCF-7) and low damage to healthy cells. Among them, compound 12k also exhibited the most prominent antitumor activity. Moreover, the hit compound 12k could bind to EGFR and HER-2 stably in molecular docking and dynamics studies. The following wound healing assay revealed that compound 12k could inhibit the migration of SK-BR-3 cells. Further studies found that compound 12k could arrest cell cycle in the G0/G1 phase and induce SK-BR-3 cells apoptosis. Notably, compound 12k could effectively inhibit breast cancer growth with little toxicity in the SK-BR-3 cell xenograft model. Taken together, in vitro and in vivo results disclosed that compound 12k had high drug potential as a dual-target inhibitor of EGFR/HER-2 to inhibit breast cancer growth.

6.
Microbiol Spectr ; : e0402523, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39190634

RESUMO

The gut microbiota, a pivotal component of the intestinal mucosal barrier, is critical for host resistance to enteric pathogen infection. Here, we report a novel function of the potentially probiotic Lactococcus garvieae strain LG1 (L. garvieae strain LG1) in maintaining intestinal mucosal barrier integrity and protecting against foodborne Clostridium perfringens (C. perfringens) infection. L. garvieae was isolated from the intestinal contents of Chinese Mongolian sheep (MS) and exhibited potential probiotic properties. In a C. perfringens enterocolitis model, L. garvieae-pretreated mice were less susceptible to C. perfringens infection compared with Phosphate buffered solution (PBS)-pretreated mice, which manifested as higher survival rates, lower pathogen loads, less weight loss, mild clinical symptoms and intestinal damage, and minor inflammation. Further mechanistic analysis showed that L. garvieae could ameliorate the disruption of intestinal permeability and maintain the integrity of the intestinal mucosal barrier by promoting the expression of tight junction proteins and mucoproteins. Moreover, L. garvieae was also able to facilitate antimicrobial peptide expression and ameliorate dysbiosis of the gut microbiota caused by C. perfringens. Together, these findings highlight the prospect of immunomodulatory potentially probiotic L. garvieae and might offer valuable strategies for prophylaxis and/or treatment of pathogenic C. perfringens mucosal infection. IMPORTANCE: C. perfringens necrotic enteritis leads to losses of about US $2 billion to the poultry industry worldwide every year. Worse, US Centers for Disease Control and Prevention (CDC) has estimated that C. perfringens causes nearly 1 million foodborne illnesses in the United States annually. Nowadays, the treatment recommendation is a combination of a broad-spectrum synergistic penicillin with clindamycin or a carbapenem, despite growing scientific concern over antibiotic resistance. The global understanding of the gut microbiome for C. perfringens infection may provide important insights into the intervention. L. garvieae originated from Mongolian sheep intestine, exhibited potentially probiotic properties, and was able to limit C. perfringens enterocolitis and pathogenic colonization. Importantly, we found that L. garvieae limits C. perfringens invasion via improving intestinal mucosal barrier function. Also, L. garvieae alleviates C. perfringens-induced gut microbiota dysbiosis. It allowed us to convince that utilization of probiotics to promote protective immunity against pathogens infection is of pivotal importance.

7.
Insects ; 15(8)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39194775

RESUMO

Parasitoids have the potential to alter the gut microbiota of their host insects post-parasitization, thereby influencing the host's physiological functions and creating a more favorable environment for the survival of the parasitoid's progeny. Cotesia ruficrus is a native enemy of the important invasive fall armyworm (FAW) pest, Spodoptera frugiperda, in China, exhibiting significant pest control capabilities. To investigate the impact of C. ruficrus on the gut bacteria of FAW caterpillars following parasitism, we used 16S rRNA sequencing technology to analyze the diversity and richness of gut bacteria in both long-term laboratory and short-term laboratory FAW caterpillars. The results revealed Enterococcus as the predominant bacteria across all treatments, while no significant differences were observed in the diversity and richness of gut bacteria between non-parasitized and parasitized long-term laboratory FAW caterpillars. Similarly, while the diversity of gut bacteria in non-parasitized and parasitized short-term laboratory FAWs showed no significant variance, a marked discrepancy in richness was noted. Moreover, the richness of gut bacteria in short-term laboratory FAW caterpillars surpassed that of their long-term laboratory counterparts. In addition, it was found that Corynebacterium existed only in the intestinal tract of FAW caterpillars that were parasitized by C. ruficrus. These results substantiate that C. ruficrus parasitization can alter the gut microbiota of FAW caterpillars, providing valuable insights into the interplay between gut microbiota and the dynamics of parasitoid-host interactions.

8.
Huan Jing Ke Xue ; 45(8): 4812-4824, 2024 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-39168698

RESUMO

The contents of eight heavy metals (Cr, Ni, Cu, Zn, Cd, Pb, As, and Hg) were determined based on the surface soil samples of sewage irrigation and industrial complex in Kaifeng City. The absolute factor analysis-multiple linear regression (APCS-MLR) model and positive matrix factorization (PMF) model were used to analyze the sources and contribution rates of heavy metals in soil combined with correlation analysis and systematic cluster analysis. The results showed that: ① The average values of ω(Cr), ω(Ni), ω(Cu), ω(Zn), ω(Cd), ω(Pb), ω(As), and ω(Hg) in the study area were 52.19, 25.00, 42.03, 323.53, 1.79, 53.45, 9.43, and 0.20 mg·kg-1, respectively, and Cr, Ni, and As are lower than the background values of tidal soil. Cu, Zn, Cd, Pb, and Hg are higher than the background values of the tidal soil. ② There were four sources of the eight heavy metals: natural sources, agricultural sewage irrigation sources, industrial atmospheric sedimentation sources, and transportation sources. Cr and Ni were mainly from natural sources; Cu, Zn, Cd, and Pb were mainly from agricultural sewage irrigation and transportation sources; As was mainly from natural sources and agricultural sewage irrigation; and Hg was mainly from industrial atmospheric sedimentation. ③ The APCS-MLR and PMF source analysis results indicated that industrial and agricultural activities were the main sources of heavy metals in the soil of the study area. The average contribution rates of APCS-MLR in the nine sampling areas of the research area were 76.01% (natural sources and agricultural sewage irrigation sources), 22.71% (industrial atmospheric sedimentation sources and transportation sources), and 1.28% (unknown sources). The average contribution rates of PMF were 59.66% (natural sources and agricultural sewage irrigation sources) and 40.34% (industrial atmospheric sedimentation sources and transportation sources). The source analysis results of the LZ, XZ, NLT, PT, YLZ, and BC models were basically consistent, and WL was better in the APCS-MLR model, whereas SG and QT were better in the PMF model. The research results can provide a scientific basis for the prevention and control of soil heavy metal pollution and environmental remediation.

9.
Quant Imaging Med Surg ; 14(7): 4333-4347, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39022262

RESUMO

Background: Dynamic surveillance of vasculature is essential for evaluating the healing of oral ulcer. Existing techniques used in vascular imaging face limitations, such as inadequate spatial resolution, restricted diagnostic depth, and the necessity of exogenous contrast agents. Therefore, this study aimed to use robust photoacoustic imaging (PAI) for the dynamic monitoring of vascular response during healing and the associated treatment process of oral ulcer. Methods: Kunming mice (male, 8 weeks old, 31-41 g) were treated with 50% acetic acid for 90 s on the tongue mucosa for induction of oral traumatic ulcer. Mice were randomly divided into three groups (n=12): the control, compound chamomile and lidocaine hydrochloride gel (CCLH), and phycocyanin (PC) groups. PAI was then conducted on days 0, 2, 3, 5, and 7 to obtain vessel parameters of the ulcer area, including vessel intensity, density, mean diameter, maximum diameter, and curvature. Immunohistochemical and hematoxylin and eosin (HE) staining were performed on days 3 and 7 to assess microvessel density and inflammation score. The ulcer healing rate and body weight changes were evaluated for clinical observation. Results: Beginning on the second day after ulcer induction, there was a progressive increase over time in blood intensity and vessel parameters, including vascular density and diameter. On day 7, the CCLH and PC groups demonstrated significantly higher measures than did the control group in terms of blood intensity (P<0.05 and P<0.01), vascular density (both P values <0.05), mean diameter (both P values <0.01), and maximum diameter (P<0.01 and P<0.05). Vessel curvature in the two treatment groups exhibited no significant differences compared to that in the control group (both P values >0.05). The effects of vascular morphological changes were further supported by the histological and clinical outcomes. On day 7, compared to that of the control group, the level of microvessel density was significantly higher in both the CCLH (P<0.01) and PC (P<0.05) groups. The histopathological score in PC group was significantly lower than that of the control group on day 7 (P<0.05). Additionally, compared to that of the control group, the healing rates of the CCLH (P<0.01) and PC groups (P<0.05) were superior on day 7. On day 3, the control group showed more weight loss than did the CCLH (P<0.05) and PC (P<0.01) groups. Conclusions: These findings indicate that PAI is a valuable strategy for the dynamic and quantitative analysis of vascular alterations in oral traumatic ulcers and support its prospective application in improving clinical treatment.

10.
Med Biol Eng Comput ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39048840

RESUMO

Right ventricular assist devices (RVADs) have been extensively used to provide hemodynamic support for patients with end-stage right heart (RV) failure. However, conventional in-parallel RVADs can lead to an elevation of pulmonary artery (PA) pressure, consequently increasing the right ventricular (RV) afterload, which is unfavorable for the relaxation of cardiac muscles and reduction of valve complications. The aim of this study is to investigate the hemodynamic effects of the pulsatile frequency of the RVAD on pulmonary artery. Firstly, a mathematical model incorporating heart, systemic circulation, pulmonary circulation, and RVAD is developed to simulate the cardiovascular system. Subsequently, the frequency characteristics of the pulmonary circulation system are analyzed, and the calculated results demonstrate that the pulsatile frequency of the RVAD has a substantive impact on the pulmonary artery pressure. Finally, to verify the analysis results, the hemodynamic effects of the pulsatile frequency of the RVAD on pulmonary artery are compared under diffident support modes. It is found that the pulmonary artery pressure decreases by approximately 6% when the pulsatile frequency changes from 1 to 3 Hz. The increased pulsatile frequency of RA-PA support mode may facilitate the opening of the pulmonary valve, while the RV-PA support mode can more effectively reduce the load of RV. This work provides a useful method to decrease the pulmonary artery pressure during the RVAD supports and may be beneficial for improving myocardial function in patients with end-stage right heart failure, especially those with pulmonary hypertension.

11.
Food Chem ; 460(Pt 1): 140534, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39053270

RESUMO

Black garlic has a variety of biological activities, but many consumers cannot accept it because of the garlic odor and the bitter taste. In this study, fermentation with yeast Wickerhamomyces anomalus was adopted to improve the flavor of black garlic juice. Although fermentation reduced antioxidant activities, the garlicky odor and bitter taste were weakened. Metabolomic analysis revealed 141 metabolites were significantly differentially regulated. The upregulated metabolites were mainly related to nucleotides, organic acids and their derivatives, while the downregulated metabolites were mainly related to amino acids, lipids and their derivatives. Flavoromics analysis revealed that 137 metabolites were significantly differentially regulated, particularly garlicky and pungent volatiles were significantly downregulated. Correlation analysis indicated that esters are most closely related to nonvolatile metabolites, and lipids degradation was significantly correlated with volatiles. The results indicated that W. anomalus fermentation is an effective strategy to improve the flavor of black garlic juice.

12.
Water Res ; 262: 122112, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39047453

RESUMO

Antibiotic pollution in water environment is an emerging threat to plant health. Developing efficient strategies to reassemble the antibiotic-tolerating endophytes will confer fitness benefits on host plants to alleviate antibiotic stress. Here, introducing environmental microbes was proved as a promising approach to reshape the antibiotic-tolerating plant endophytes under antibiotic stress in aquatic microcosms. The introduction of environmental microbes effectively relieved antibiotic-driven perturbation on plant endophytes, with reduced changes in bacterial diversity and differential bacterial taxa and functional genes. Moreover, introducing environmental microbes facilitated the enrichment of endophytic bacterial genera and functional genes related to drug metabolism, which possessed the potentials to degrade antibiotics. In addition, environmental microbes boosted antibiotic-reshaped endophytes to form more stable bacterial networks for stronger antibiotic tolerance. In consequence, the decreased growth inhibition of antibiotics on host plants and enhanced antibiotic removal from microcosms were achieved by introducing environmental microbes. These findings pursue environmental microbes as practical resources to assist plants in reshaping the stress-alleviating endophytes, potentially improving plant tolerance to water pollution.


Assuntos
Antibacterianos , Endófitos , Antibacterianos/farmacologia , Bactérias/metabolismo , Bactérias/genética , Plantas/microbiologia
13.
Viruses ; 16(7)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-39066169

RESUMO

BACKGROUND: T-cell responses can be protective or detrimental during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection; however, the underlying mechanism is poorly understood. METHODS: In this study, we screened 144 15-mer peptides spanning the SARS-CoV-2 spike, nucleocapsid (NP), M, ORF8, ORF10, and ORF3a proteins and 39 reported SARS-CoV-1 peptides in peripheral blood mononuclear cells (PBMCs) from nine laboratory-confirmed coronavirus disease 2019 (COVID-19) patients (five moderate and four severe cases) and nine healthy donors (HDs) collected before the COVID-19 pandemic. T-cell responses were monitored by IFN-γ and IL-17A production using ELISA, and the positive samples were sequenced for the T cell receptor (TCR) ß chain. The positive T-cell responses to individual SARS-CoV-2 peptides were validated by flow cytometry. RESULTS: COVID-19 patients with moderate disease produced more IFN-γ than HDs and patients with severe disease (moderate vs. HDs, p < 0.0001; moderate vs. severe, p < 0.0001) but less IL-17A than those with severe disease (p < 0.0001). A positive correlation was observed between IFN-γ production and T-cell clonal expansion in patients with moderate COVID-19 (r = 0.3370, p = 0.0214) but not in those with severe COVID-19 (r = -0.1700, p = 0.2480). Using flow cytometry, we identified that a conserved peptide of the M protein (Peptide-120, P120) was a dominant epitope recognized by CD8+ T cells in patients with moderate disease. CONCLUSION: Coordinated IFN-γ production and clonal expansion of SARS-CoV-2-specific T cells are associated with disease resolution in COVID-19. Our findings contribute to a better understanding of T-cell-mediated immunity in COVID-19 and may inform future strategies for managing and preventing severe outcomes of SARS-CoV-2 infection.


Assuntos
COVID-19 , Mapeamento de Epitopos , Epitopos de Linfócito T , Interferon gama , SARS-CoV-2 , Humanos , Interferon gama/imunologia , Interferon gama/metabolismo , COVID-19/imunologia , COVID-19/virologia , Epitopos de Linfócito T/imunologia , SARS-CoV-2/imunologia , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Interleucina-17/imunologia , Interleucina-17/metabolismo , Idoso , Linfócitos T/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T CD8-Positivos/imunologia
14.
J Org Chem ; 89(16): 11558-11566, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39082143

RESUMO

Efficient copper-catalyzed radical thiocyanosulfonylation of alkenes and alkynes with potassium thiocyanate and sodium phenylsulfinate is described. The reactions provide general and convenient methods toward the synthesis of ß-thiocyanoalkyl sulfones and ß-thiocyanoalkenyl sulfones, respectively, in satisfactory yields. Based on conducted mechanistic experiments, a mechanism involving oxidative generation of sulfonyl radicals and subsequent addition to alkenes followed by Cu-assisted thiocyanation is proposed. Moreover, the practicability of the reaction is successfully demonstrated by its successful application on a gram scale.

15.
Support Care Cancer ; 32(8): 561, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085696

RESUMO

Prostate cancer is one of the most common malignancies and a leading cause of death in men. Owing to its excellent anti-tumor effects, androgen deprivation therapy (ADT) is widely used in the treatment of prostate cancer. However, its use is controversial because of its potential for inducing cognitive decline. In this review, we summarized the findings of preclinical and clinical studies investigating the effects of ADT on cognitive function in prostate cancer. We discussed the methods used to assess cognitive function in these studies, elucidated the mechanisms through which ADT affects cognitive function, and highlighted recent advancements in cognitive assessment methods. The findings of this review serve as a valuable reference for examining the relationship between ADT and cognitive function in future studies. Besides, the findings may help clinicians understand the advantages and disadvantages of ADT and optimize the treatment plan so as to minimize the adverse effects of ADT.


Assuntos
Antagonistas de Androgênios , Cognição , Neoplasias da Próstata , Humanos , Antagonistas de Androgênios/efeitos adversos , Neoplasias da Próstata/tratamento farmacológico , Masculino , Cognição/efeitos dos fármacos , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/etiologia , Fatores de Risco
16.
Small ; : e2404285, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39073246

RESUMO

The solar-driven overall water splitting (2H2O→2H2 + O2) is considered as one of the most promising strategies for reducing carbon emissions and meeting energy demands. However, due to the sluggish performance and high H2 cost, there is still a big gap for the current photocatalytic systems to meet the requirements for practical sustainable H2 production. Economic feasibility can be attained through simultaneously generating products of greater value than O2, such as hydrogen peroxide (H2O2, 2H2O→H2 + H2O2). Compared with overall water splitting, this approach is more kinetically feasible and generates more high-value products of H2 and H2O2. In several years, there has been an increasing surge in exploring the possibility and substantial progress has been achieved. In this review, a concise overview of the importance and underlying principles of PIWS is first provided. Next, the reported typical photocatalysts for PIWS are discussed, including commonly used semiconductors and cocatalysts, essential design features of these photocatalysts, and connections between their structures and activities, as well as the selected approaches for enhancing their stability. Then, the techniques used to quantify H2O2 and the operando characterization techniques that can be employed to gain a thorough understanding of the reaction mechanisms are summarized. Finally, the current existing challenges and the direction needing improvement are presented. This review aims to provide a thorough summary of the most recent research developments in PIWS and sets the stage for future advancements and discoveries in this emerging area.

18.
Adv Sci (Weinh) ; : e2402450, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38952061

RESUMO

Discovering new treatments for melanoma will benefit human health. The mechanism by which deoxyhypusine synthase (DHPS) promotes melanoma development remains elucidated. Multi-omics studies have revealed that DHPS regulates m6A modification and maintains mRNA stability in melanoma cells. Mechanistically, DHPS activates the hypusination of eukaryotic translation initiation factor 5A (eIF5A) to assist METTL3 localizing on its mRNA for m6A modification, then promoting METTL3 expression. Structure-based design, synthesis, and activity screening yielded the hit compound GL-1 as a DHPS inhibitor. Notably, GL-1 directly inhibits DHPS binding to eIF5A, whereas GC-7 cannot. Based on the clarification of the mode of action of GL-1 on DHPS, it is found that GL-1 can promote the accumulation of intracellular Cu2+ to induce apoptosis, and antibody microarray analysis shows that GL-1 inhibits the expression of several cytokines. GL-1 shows promising antitumor activity with good bioavailability in a xenograft tumor model. These findings clarify the molecular mechanisms by which DHPS regulates melanoma proliferation and demonstrate the potential of GL-1 for clinical melanoma therapy.

19.
Arch Pharm (Weinheim) ; : e2400137, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963324

RESUMO

In our previous study, we reported a series of N-(9,10-anthraquinone-2-carbonyl) amino acid derivatives as novel inhibitors of xanthine oxidase (XO). Recognizing the suboptimal drug-like properties associated with the anthraquinone moiety, we embarked on a nonanthraquinone medicinal chemistry exploration in the current investigation. Through systematic structure-activity relationship (SAR) studies, we identified a series of 4-(isopentyloxy)-3-nitrobenzamide derivatives exhibiting excellent in vitro potency against XO. The optimized compound, 4-isopentyloxy-N-(1H-pyrazol-3-yl)-3-nitrobenzamide (6k), demonstrated exceptional in vitro potency with an IC50 value of 0.13 µM. Compound 6k showed favorable drug-like characteristics with ligand efficiency (LE) and lipophilic ligand efficiency (LLE) values of 0.41 and 3.73, respectively. In comparison to the initial compound 1d, 6k exhibited a substantial 24-fold improvement in IC50, along with a 1.6-fold enhancement in LE and a 3.7-fold increase in LLE. Molecular modeling studies provided insights into the strong interactions of 6k with critical amino acid residues within the active site. Furthermore, in vivo hypouricemic investigations convincingly demonstrated that 6k significantly reduced serum uric acid levels in rats. The MTT results revealed that compound 6k is nontoxic to healthy cells. The gastric and intestinal stability assay demonstrated that compound 6k exhibits good stability in the gastric and intestinal environments. In conclusion, compound 6k emerges as a promising lead compound, showcasing both exceptional in vitro potency and favorable drug-like characteristics, thereby warranting further exploration.

20.
Calcif Tissue Int ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060403

RESUMO

The gut microbiome is linked to osteoporosis. Previous clinical studies showed inconsistent results. This study aimed to characterize the gut microbiota feature and reveal its relation with diet in postmenopausal osteoporosis. Fifty-five postmenopausal women with osteoporosis (Op group) and forty-four age-matched postmenopausal women (normal bone mineral density, Con group) were included in this study. Fecal microbiota was collected and analyzed by shallow shotgun sequencing. Food frequency questionnaires were collected from both groups, and Spearman analysis was used to clarify its correlation with gut microbiota. A total of 2671 species from 29 phyla, 292 families, 152 orders, 80 classes were detected in the study. The two groups had no significant difference in the α and ß diversity (p > 0.05). At the genus level, Anaerostipes was enriched in Op group (p < 0.05). At species level, Methanobrevibacter smithii, Bifidobacterium animalis, Rhodococcus defluvii, Lactobacillus plantarum, and Carnobacterium mobile were enriched in the Op group, while Bacillus luciferensis, Acetivibrio cellulolyticus, Citrobacter amalonaticus, and Bifidobacterium breve were differentially enriched in the Con group. Food frequency questionnaire showed that postmenopausal women with osteoporosis intaked more red meat, beer, white and red wine (p < 0.05), and the Con group had more yogurt, fruit, and tea consumption. Red meat consumption had a significant negative correlation with Streptosporangiales (p < 0.01) and Actinomadura (p < 0.05). Fruits intake negatively correlated with Nocardiaceae, Rhodococcus, and Rhodococcus defluvii (p < 0.05). More yogurt intake was consistently correlated with a greater abundance of Streptosporangiales. This study suggests that gut microbiota is significantly altered in the postmenopausal osteoporosis population at genus and species levels, and specific dietary intake might relate to these changes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA