RESUMO
The limited osteointegration often leads to the failure of implant, which can be improved by fixing bioactive molecules onto the surface, such as arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif. Metal-Phenolic Networks (MPNs) have garnered increasing attention from different disciplines in recent years due to their simple and rapid process for depositing on various substrates or particles with different shapes. However, the lack of cellular binding sites on MPNs greatly blocks its application in tissue engineering. In this study, we present a facile and efficient approach for producing PC/Fe@c(RGDfc) composite coatings through the conjugation of c(RGDfc) peptides onto the surface of PC/Fe-MPNs utilizing thiol-click reaction. By combined various techniques (ellipsometry, X-ray photoelectron spectroscopy, Liquid Chromatography-Mass Spectrometry, water contact angle, scanning electronic microscopy, atomic force microscopy) the physicochemical properties (composition, coating mechanism and process, modulus and hydrophilicity) of PC/Fe@c(RGDfc) surface were characterized in detail. In addition, the PC/Fe@c(RGDfc) coating exhibits the remarkable ability to positively modulate cellular attachment, proliferation, migration and promoted bone-implant integration in vivo, maintaining the inherent features of MPNs: anti-inflammatory, anti-oxidative properties, as well as multiple substrate deposition. This work contributes to engineering MPNs-based coatings with bioactive molecules by a facile and efficient thiol-click reaction, as an innovative perspective for future development of surface modification of implant materials.
RESUMO
Utilizing complementary bioactive peptides is a promising surface engineering strategy for bone regeneration on osteogenesis. In this study, we designed block peptides, (Lysine)6-capped RGD (K6-(linker-RGD)3) and OGP (K6-linker-(YGFGG)2), which were mildly grafted onto PC/Fe-MPNs through supramolecular interactions between K6 and PC residues on the MPNs surface to form a dual peptide coating, named PC/Fe@K6-RGD/OGP. The properties of the block peptides coating, including mechanics, hydrophilicity, chemical composition, etc., were detailly characterized by various techniques (ellipsometry, quartz crystal microbalance, X-ray photoelectron spectroscopy, water contact angle, scanning electronic microscopy and atomic force microscopy). Importantly, the RGD/OGP ratio can be well adjusted, which allowed optimizing the RGD/OGP ratio to endow significantly enhanced osteogenic activity of MC3T3-E1 cells through the Wnt/ß-catenin pathway, while also promoting cell adhesion, immune regulation, inhibiting osteoclast differentiation and oxidative stress reduction. In vivo, the optimized RGD/OGP coatings promoted bone regeneration and osseointegration around implants in rats with bone defects. In conclusion, rationally designed PC/Fe@K6-RGD/OGP coating integrated RGD and OGP bioactivities, providing a convenient approach to enhance bioinert implant surfaces for bone regeneration.
RESUMO
Osteonecrosis of the femoral head (ONFH) is a condition caused by a disruption or damage to the femoral head's blood supply, which causes the death of bone cells and bone marrow components and prevents future regeneration. Ferroptosis, a type of controlled cell death, is caused by iron-dependent lipid peroxidation. Here, we identified ferroptosis-related genes and infiltrating immune cells involved in ONFH and predicted the underlying molecular mechanisms. The GSE123568 dataset was subjected to differential expression analysis to identify genes related to ferroptosis. Subsequently, GO and KEGG pathway enrichment analyses, as well as protein-protein interaction (PPI) network analysis, were conducted. Hub genes involved in ferroptosis were identified using machine learning and other techniques. Additionally, immune infiltration analysis and lncRNA-miRNA-mRNA network prediction analysis were performed. Finally, we determined whether ferroptosis occurred by measuring iron content. The hub genes were validated by ROC curve analysis and qRT-PCR. Four ferroptosis-related hub genes (MAPK3, PTGS2, STK11, and SLC2A1) were identified. Additionally, immune infiltration analysis revealed a strong correlation among ONFH, hub genes, and various immune cells. Finally, we predicted the network relationship between differentially expressed lncRNAs and hub genes in the lncRNA-miRNA-mRNA network. MAPK3, PTGS2, STK11, and SLC2A1 have been identified as potential ferroptosis-related biomarkers and drug targets for the diagnosis and prognosis of ONFH, while some immune cells, as well as the interaction between lncRNA, miRNA, and mRNA, have also been identified as potential pathogenesis markers and therapeutic targets.
Assuntos
Ferroptose , MicroRNAs , RNA Longo não Codificante , Cabeça do Fêmur , Ciclo-Oxigenase 2 , Ferroptose/genética , RNA Longo não Codificante/genética , Ferro , Aprendizado de Máquina , MicroRNAs/genética , RNA MensageiroRESUMO
BACKGROUND: Osteoarthritis is a very common clinical disease in middle-aged and elderly individuals, and with the advent of ageing, the incidence of this disease is gradually increasing. There are few studies on the role of basement membrane (BM)-related genes in OA. METHOD: We used bioinformatics and machine learning methods to identify important genes related to BMs in OA patients and performed immune infiltration analysis, lncRNAâmiRNA-mRNA network prediction, ROC analysis, and qRTâPCR. RESULT: Based on the results of machine learning, we determined that LAMA2 and NID2 were the key diagnostic genes of OA, which were confirmed by ROC and qRTâPCR analyses. Immune analysis showed that LAMA2 and NID2 were closely related to resting memory CD4 T cells, mast cells and plasma cells. Two lncRNAs, XIST and TTTY15, were simultaneously identified, and lncRNAâmiRNAâmRNA network prediction was performed. CONCLUSION: LAMA2 and NID2 are important potential targets for the diagnosis and treatment of OA.
Assuntos
MicroRNAs , Osteoartrite , RNA Longo não Codificante , Idoso , Pessoa de Meia-Idade , Humanos , RNA Longo não Codificante/genética , MicroRNAs/genética , Membrana Basal , Biomarcadores , Aprendizado de Máquina , Osteoartrite/diagnóstico , Osteoartrite/genética , RNA Mensageiro/genéticaRESUMO
This study was performed to explore the effect of melatonin on pyroptosis in nucleus pulposus cells (NPCs) and the underlying mechanism of that effect. This experiment included three patients diagnosed with lumbar disc herniation who failed conservative treatment. Nucleus pulposus tissue was isolated from these patients when they underwent surgical intervention, and primary NPCs were isolated and cultured. Western blotting, reverse transcription polymerase chain reaction, fluorescence staining, and other methods were used to detect changes in related signalling pathways and the ability of cells to resist pyroptosis. Western blot analysis confirmed the expression of cleaved CASP-1 and melatonin receptor (MT-1A-R) in NPCs. The cultured NPCs were identified by detecting the expression of CD24, collagen type II, and aggrecan. After treatment with hydrogen peroxide, the pyroptosis-related proteins NLR family pyrin domain containing 3 (NLRP3), cleaved CASP-1, N-terminal fragment of gasdermin D (GSDMD-N), interleukin (IL)-18, and IL-1ß in NPCs were upregulated, and the number of propidium iodide (PI)-positive cells was also increased, which was able to be alleviated by pretreatment with melatonin. The protective effect of melatonin on pyroptosis was blunted by both the melatonin receptor antagonist luzindole and the nuclear factor erythroid 2-related factor 2 (Nrf2) inhibitor ML385. In addition, the expression of the transcription factor Nrf2 was up- or downregulated when the melatonin receptor was activated or blocked by melatonin or luzindole, respectively. Melatonin protects NPCs against reactive oxygen species-induced pyroptosis by upregulating the transcription factor Nrf2 via melatonin receptors.
RESUMO
Collagen, commonly used in tissue engineering, is widespread in various tissues. During bone tissue regeneration, collagen can stimulate the cellular response and determine the fate of cells. In this work, we integrated collagen type II with procyanidin (PC) onto an implant coating by applying a layer-by-layer technique to demonstrate that collagen and PC can participate in the construction of new biomaterials and serve as multifunctional components. The effects of PC/collagen multilayers on the viability of cocultured bone marrow mesenchymal stem cells (BMSCs) were analyzed by cell counting kit-8 analysis and phalloidin staining. The reactive oxygen species level of BMSCs was revealed through immunofluorescent staining and flow cytometry. Osteogenesis-related genes were detected, and in vivo experiment was performed to reveal the effect of newly designed material on the osteogenic differentiation of BMSCs. Our data demonstrated that in BMSCs PC/collagen multilayers accelerated the proliferation and osteogenic differentiation through Wnt/ß-catenin signaling pathway and enhanced bone generation around the implant in the bone defect model of rabbit femurs. In summary, combination of collagen and PC provided a new sight for the research and development of implant materials or coatings in the future.
RESUMO
Mucin, a family of glycoproteins, is widespread in the inner linings of various lumen organs and plays key roles in protecting epithelial cells from invasion by foreign species and communicating with the external environment. Here, we demonstrated that Mucin could be engineered as a promising building block in biomaterials with unexpected multifunctionalities by codepositing with procyanidin (PC, a kind of flavanol polyphenol) through a layer-by-layer technique. The process of generating PC/Mucin multilayers was well characterized and monitored, which was controllable by the assembly conditions. The behaviors of bone marrow mesenchymal stem cells (BMSCs), including proliferation, antioxidant ability, and expression of vinculin, were investigated to reveal the role of PC/Mucin multilayers on the osteogenic differentiation of BMSCs. Our data showed that PC/Mucin multilayers promoted osteogenesis-related genes (Col1, ON, OCN and RUNX2) in BMSCs in vitro and bone generation in vivo by activating the Wnt/ß-catenin pathway. These findings demonstrate that engineering Mucin might be a new route in the future to implant materials or coatings for bone regeneration.