Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 546
Filtrar
1.
Arthrosc Tech ; 13(4): 102904, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38690354

RESUMO

Arthroscopic repair of Bankart injury is the first choice for the treatment of anterior shoulder instability. How to avoid recurring shoulder joint dislocation is a challenge, especially when combined with Hill-Sachs lesions. The arthroscopy technology allows for broader vision and less surgical trauma but is limited by a smaller operating space. At present, extensive descriptions about the surgical procedure of arthroscopic Bankart repair have been published. In this Technical Note, we describe the use of remplissage filling with Hill-Sachs lesion combined with Bankart repair to further improve the surgical accuracy and clinical efficacy. In particular, the application of single needle-assisted outside-in remplissage technique and Bankart repair is introduced in detail.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38719166

RESUMO

OBJECTIVE: To investigate the effects of physiotherapeutic scoliosis-specific exercises (PSSE) on coronal, horizontal, and sagittal deformities of the spine in adolescent idiopathic scoliosis (AIS) as well as how curve severity, intervention duration, and intervention type could modify these effects. DATA SOURCES: Data sources included PubMed, Web of Science, Embase, Cochrane Library, and Scopus databases, which were searched from their inception to September 5, 2023. STUDY SELECTION: Clinical controlled trials reporting the effects of PSSE on the Cobb angle, angle of trunk rotation (ATR), thoracic kyphosis (TK), or lumbar lordosis in patients with AIS aged 10-18 years. The experimental groups received PSSE; the control groups received standard care (observation or bracing) or conventional exercise such as core stabilization exercise, Pilates, proprioceptive neuromuscular facilitation, and other nonspecific exercises. DATA EXTRACTION: Two researchers independently extracted key information from eligible studies. The quality of the studies was assessed using the Cochrane Handbook version 5.1.0 risk of bias assessment and the JBI Center for Evidence-Based Health Care (2016) of quasi-experimental research authenticity assessment tool. The level and certainty of evidence were rated according to the Grading of Recommendations, Assessment, Development, and Evaluation framework. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. The protocol for this study was registered in PROSPERO (CRD42023404996). DATA SYNTHESIS: Twelve randomized controlled trials (RCTs) and 5 non-RCTs were meta-analyzed separately. The results indicated that compared with other nonsurgical management, PSSE significantly improved the Cobb angle, ATR, and TK, whereas the lumbar lordosis improvement was not statistically significant. Additionally, the efficacy of PSSE on Cobb angle was not significant in patients with curve severity ≥30° compared with controls. Nevertheless, the pooled effect of PSSE on Cobb angle was not significantly modified by intervention duration and intervention type and that on ATR was not significantly modified by intervention duration. The overall quality of evidence according to Grading of Recommendations, Assessment, Development, and Evaluation was moderate to low for RCT and very low for non-RCT. CONCLUSIONS: PSSE exhibited positive benefits on the Cobb angle, ATR, and TK in patients with AIS compared with other nonsurgical therapies. In addition, the effectiveness of PSSE may be independent of intervention duration and intervention type but may be influenced by the initial Cobb angle. However, more RCTs are needed in the future to validate the efficacy of PSSE in moderate AIS with a mean Cobb angle ≥30°. Current evidence is limited by inconsistent control group interventions and small sample size of the studies.

3.
Int J Biol Macromol ; 270(Pt 2): 132433, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759861

RESUMO

Nanopore direct RNA sequencing provided a promising solution for unraveling the landscapes of modifications on single RNA molecules. Here, we proposed NanoMUD, a computational framework for predicting the RNA pseudouridine modification (Ψ) and its methylated analog N1-methylpseudouridine (m1Ψ), which have critical application in mRNA vaccination, at single-base and single-molecule resolution from direct RNA sequencing data. Electric signal features were fed into a bidirectional LSTM neural network to achieve improved accuracy and predictive capabilities. Motif-specific models (NNUNN, N = A, C, U or G) were trained based on features extracted from designed dataset and achieved superior performance on molecule-level modification prediction (Ψ models: min AUC = 0.86, max AUC = 0.99; m1Ψ models: min AUC = 0.87, max AUC = 0.99). We then aggregated read-level predictions for site stoichiometry estimation. Given the observed sequence-dependent bias in model performance, we trained regression models based on the distribution of modification probabilities for sites with known stoichiometry. The distribution-based site stoichiometry estimation method allows unbiased comparison between different contexts. To demonstrate the feasibility of our work, three case studies on both in vitro and in vivo transcribed RNAs were presented. NanoMUD will make a powerful tool to facilitate the research on modified therapeutic IVT RNAs and provides useful insight to the landscape and stoichiometry of pseudouridine and N1-pseudouridine on in vivo transcribed RNA species.


Assuntos
Pseudouridina , Análise de Sequência de RNA , Pseudouridina/química , Análise de Sequência de RNA/métodos , RNA/química , Nanoporos , Redes Neurais de Computação , Sequenciamento por Nanoporos/métodos
4.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1774-1784, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38812189

RESUMO

The study aims to investigate the effects and potential mechanism of raw and processed Aconitum pendulum Busch on rheumatoid arthritis(RA) and analyze their toxicity attenuating and efficacy retaining effects. The bovine type Ⅱ collagen-induced arthritis(CIA) rat model was established. The weight, cardiac index, immune organ index, and arthritis index of the rats were recorded and calculated after administration. ELISA was used to measure the expressions of creatine kinase(CK), cardiac troponin T(cTnT), and multiple factors. The pathological morphological changes in heart tissue and ankle joint tissue were observed by hematoxylin-eosin staining. Connexin 43(Cx43) expression in the hearts of CIA rats was detected via immunohistochemical method. The levels of endogenous metabolites in the serum of CIA rats were detected by UPLC-Q-TOF-MS. Potential biomarkers were screened, and related metabolic pathways were analyzed. The results showed that raw A. pendulum could induce local myocardial fiber degeneration and necrosis, increase the cardiac index, decrease the average positive area of Cx43 expression significantly, and increase the expressions of CK and cTnT in cardiac tissue of rats. Meanwhile, raw A. pendulum could decrease the immune organ index, interleukin-6(IL-6), and other inflammatory cytokine contents in the serum and improve the damaged synovium and joint surface of CIA rats, with toxicity and efficacy coexisting. The Zanba stir-fired A. pendulum could reduce the index of arthritis, immune organ index, and content of IL-6 and inflammatory cytokines in serum and improve damaged synovium and joint surface of CIA rats with no obvious cardiac toxicity, showing significant toxicity attenuating and efficacy retaining effects. A total of 19 potential biomarkers of raw A. pendulum and Zanba stir-fired A. pendulum against RA were screened by serum metabolomics, including glycerophospholipid metabolism, glycine, serine, and threonine metabolism, arginine and proline metabolism, and steroid hormone synthesis. In conclusion, Xizang medicine A. pendulum is preventive and curative for RA. Raw A. pendulum has certain cardiotoxicity, and Zanba stir-fired A. pendulum has significant toxicity attenuating and efficacy retaining effects. The anti-RA mechanism may be related to the regulation of glycerophospholipid and amino acid metabolism.


Assuntos
Aconitum , Artrite Reumatoide , Medicamentos de Ervas Chinesas , Metabolômica , Animais , Aconitum/química , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Ratos , Medicamentos de Ervas Chinesas/administração & dosagem , Masculino , Feminino , Humanos , Ratos Sprague-Dawley , Conexina 43/metabolismo , Conexina 43/genética , Bovinos , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Creatina Quinase/sangue
6.
Methods ; 228: 30-37, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38768930

RESUMO

With the recent advanced direct RNA sequencing technique that proposed by the Oxford Nanopore Technologies, RNA modifications can be detected and profiled in a simple and straightforward manner. Majority nanopore-based modification studies were devoted to those popular types such as m6A and pseudouridine. To address current limitations on studying the crucial regulator, m1A modification, we conceived this study. We have developed an integrated computational workflow designed for the detection of m1A modifications from direct RNA sequencing data. This workflow comprises a feature extractor responsible for capturing signal characteristics (such as mean, standard deviations, and length of electric signals), a single molecule-level m1A predictor trained with features extracted from the IVT dataset using classical machine learning algorithms, a confident m1A site selector employing the binomial test to identify statistically significant m1A sites, and an m1A modification rate estimator. Our model achieved accurate molecule-level prediction (Average AUC = 0.9689) and reliable m1A site detection and quantification. To show the feasibility of our workflow, we conducted a study on in vivo transcribed human HEK293 cell line, and the results were carefully annotated and compared with other techniques (i.e., Illumina sequencing-based techniques). We believed that this tool will enabling a comprehensive understanding of the m1A modification and its functional mechanisms within cells and organisms.

7.
World J Stem Cells ; 16(5): 525-537, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38817335

RESUMO

BACKGROUND: Acute kidney injury (AKI) is a common clinical syndrome with high morbidity and mortality rates. The use of pluripotent stem cells holds great promise for the treatment of AKI. Urine-derived stem cells (USCs) are a novel and versatile cell source in cell-based therapy and regenerative medicine that provide advantages of a noninvasive, simple, and low-cost approach and are induced with high multidifferentiation potential. Whether these cells could serve as a potential stem cell source for the treatment of AKI has not been determined. AIM: To investigate whether USCs can serve as a potential stem cell source to improve renal function and histological structure after experimental AKI. METHODS: Stem cell markers with multidifferentiation potential were isolated from human amniotic fluid. AKI severe combined immune deficiency (SCID) mice models were induced by means of an intramuscular injection with glycerol. USCs isolated from human-voided urine were administered via tail veins. The functional changes in the kidney were assessed by the levels of blood urea nitrogen and serum creatinine. The histologic changes were evaluated by hematoxylin and eosin staining and transferase dUTP nick-end labeling staining. Meanwhile, we compared the regenerative potential of USCs with bone marrow-derived mesenchymal stem cells (MSCs). RESULTS: Treatment with USCs significantly alleviated histological destruction and functional decline. The renal function was rapidly restored after intravenous injection of 5 × 105 human USCs into SCID mice with glycerol-induced AKI compared with injection of saline. Results from secretion assays conducted in vitro demonstrated that both stem cell varieties released a wide array of cytokines and growth factors. This suggests that a mixture of various mediators closely interacts with their biochemical functions. Two types of stem cells showed enhanced tubular cell proliferation and decreased tubular cell apoptosis, although USC treatment was not more effective than MSC treatment. We found that USC therapy significantly improved renal function and histological damage, inhibited inflammation and apoptosis processes in the kidney, and promoted tubular epithelial proliferation. CONCLUSION: Our study demonstrated the potential of USCs for the treatment of AKI, representing a new clinical therapeutic strategy.

8.
Plant Physiol Biochem ; 211: 108662, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38691876

RESUMO

WOX11/12 is a homeobox gene of WOX11 and WOX12 in Arabidopsis that plays important roles in crown root development and growth. It has been reported that WOX11/12 participates in adventitious root (AR) formation and different abiotic stress responses, but the downstream regulatory network of WOX11/12 in poplar remains to be further investigated. In this study, we found that PagWOX11/12a is strongly induced by PEG-simulated drought stress. PagWOX11/12a-overexpressing poplar plantlets showed lower oxidative damage levels, greater antioxidant enzyme activities and reactive oxygen species (ROS) scavenging capacity than non-transgenic poplar plants, whereas PagWOX11/12a dominant repression weakened root biomass accumulation and drought tolerance in poplar. RNA-seq analysis revealed that several differentially expressed genes (DEGs) regulated by PagWOX11/12a are involved in redox metabolism and drought stress response. We used RT-qPCR and yeast one-hybrid (Y1H) assays to validate the downstream target genes of PagWOX11/12a. These results provide new insights into the biological function and molecular regulatory mechanism of WOX11/12 in the abiotic resistance processes of poplar.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Populus , Espécies Reativas de Oxigênio , Populus/genética , Populus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Resistência à Seca
9.
Angew Chem Int Ed Engl ; : e202404769, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783562

RESUMO

Elastomeric solid polymer electrolytes (SPEs) are highly promising to address the solid-solid-interface issues of solid-state lithium metal batteries (LMBs), but compromises have to be made to balance the intrinsic trade-offs among their conductive, resilient and recyclable properties. Here, we propose a dual-bond crosslinking strategy for SPEs to realize simultaneously high ionic conductivity, elastic resilience and recyclability. An elastomeric SPE is therefore designed with hemiaminal dynamic covalent networks and Li+-dissociation co-polymer chains, where the -C-N- bond maintains the load-bearing covalent network under stress but is chemically reversible through a non-spontaneous reaction, the weaker intramolecular hydrogen bond is mechanically reversible to dissipate elastic energy, and the soft chains endow the rapid ion conduction. With this delicate structure, the optimized SPE elastomer achieves high elastic resilience without loading-unloading hysteresis, outstanding ionic conductivity of 0.2 mS cm-1 (25 °C) and chemical recyclability. Then, exceptional room-temperature performances are obtained for repeated Li plating/stripping tests, and stable cycling of LMBs with either LiFePO4 or 4.3 V-class LiFe0.2Mn0.8PO4 cathode. Furthermore, the recycled SPE can be circularly reused in LMBs without significant performance degradation. Our findings provide an inspiring design principle for SPEs to address the solid-solid-interface and sustainability challenges of solid-state LMBs.

10.
Huan Jing Ke Xue ; 45(5): 2640-2650, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629528

RESUMO

DOM is the largest reservoir of organic carbon in the world, and it plays a crucial role in the biogeochemical cycles of natural water bodies. A river is a transition area connecting source water and receiving water that controls the DOM exchange between them. Therefore, in this study, ultraviolet visible spectroscopy (UV-vis) and three-dimensional fluorescence spectroscopy (EEMs) combined with parallel factor analysis (PARAFAC) were used to analyze the spectral characteristics and sources of dissolved organic matter in the Fuhe River, Xiaobai River, Baigouyin River, and Puhe River of Baiyangdian. The results showed that a245 and a355 in the Fuhe River and Xiaobai River were significantly higher than those in the Baigouyin River and Puhe River. E2/E3 showed that the DOM relative molecular mass of the inflow river water body was Puhe River > Baigouyin River > Fuhe River > Xiaobai River. Three components, tyrosine-like (C1), terrigenous humus (C2), and tryptophan-like (C3), were determined using three-dimensional fluorescence through PARAFAC. There was no difference among the fluorescence components (P>0.05), but there were differences among the C2 and C3 components (P<0.05). The proportion of easily degradable protein-like components (C1+C3) was higher than that of humus-like components (C2). The autogeny index BIX was greater than 1, and the humification index HIX was less than 4, indicating that the autogeny characteristics of the river bodies were obvious, and the humification degree was weak. The FI index was the highest (1.96±0.25), and the HIX index was the lowest (0.46±0.08), and the self-generated source characteristics gradually strengthened along the direction of the river entering the lake, indicating that the water body of the Fuhe River showed higher endogenous and autogenic characteristics. Based on the correlation analysis of fluorescence components and characteristic parameters of DOM, the correlations between the Fuhe River and Xiaobaihe River and between the Baigouyin River and Puhe River bodies were similar. The correlation between fluorescence components of DOM and water quality parameters of each lake was significantly different, and it was strongly correlated with nitrogen and phosphorus in water. According to multiple linear regression analysis, there was no significant difference among C1 components, but there was a significant difference between C2 and C3 components. In summary, the carbon cycle process of Baiyangdian Lake was further understood through the study on the DOM spectral characteristics and sources of the inflow river waters in the summer flood season.

11.
Nat Prod Res ; : 1-8, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683975

RESUMO

A new labdane diterpene (1), two new norsesquiterpenoids (2-3), as well as eight known terpenoids (4-11) were isolated from the seeds of Alpinia galanga (Zingiberaceae). Their structures and absolute configurations were elucidated by 1D, 2D NMR, MS, and comparison of their experimental and calculated electronic circular dichroism (ECD). The acetylcholinesterase (AChE) inhibitory activities of all the isolated compounds (1-11) were evaluated and the result showed that compounds 6 and 9 had inhibitory activity against AChE, with IC50 values at 295.70 and 183.91 µM, whereas other compounds did not show any inhibitory activity.

12.
Water Res ; 254: 121424, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460226

RESUMO

Partial nitritation-anammox (PN/A), an energy-neutral process, is widely employed in the treatment of nitrogen-rich wastewater. However, the intrinsic nitrate accumulation limits the total nitrogen (TN) removal, and the practical application of PN/A continues to face a significant challenge at low temperatures (<15 °C). Here, an integrated partial nitritation-anammox and iron-based denitrification (PNAID) system was developed to address the concern. Two up-flow bioreactors were set up and operated for 400 days, with one as the control group and the other as the experiment group with the addition of Fe0. In comparison to the control group, the experiment group with the Fe0 supplement showed better nitrogen removal during the entire course of the experiment at different temperature levels. Specifically, the TN removal efficiency of the control group decreased from 82.9 % to 53.9 % when the temperature decreased from 30 to 12 °C, while in stark contrast, the experiment group consistently achieved 80 % of TN removal in the same condition. Apart from the enhanced nitrogen removal, the experiment group also exhibited better phosphorus removal (10.6 % versus 74.1 %) and organics removal (49.5 % versus 65.1 %). The enhanced and resilient nutrient removal performance of the proposed integrated process under low temperatures appeared to be attributed to the compact structure of granules and the increased microbial metabolism with Fe0 supplement, elucidated by a comprehensive analysis including microbial-specific activity, apparent activation energy, characteristics of granular sludge, and metagenomic sequencing. These results clearly confirmed that Fe0 supplement not only improved nitrogen removal of PN/A process, but also conferred a certain degree of robustness to the system in the face of temperature fluctuations.


Assuntos
Compostos de Amônio , Desnitrificação , Temperatura , Oxidação Anaeróbia da Amônia , Águas Residuárias , Esgotos , Reatores Biológicos , Oxirredução , Nitrogênio/metabolismo
13.
Bioresour Technol ; 399: 130565, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38461870

RESUMO

Producing caproic acid via carboxylate platform is an environmentally-friendly approach for treating lignocellulosic agricultural waste. However, its implementation is still challenged by low product yields and selectivity. A microbiome named cellulolytic acid-producing microbiome (DCB), proficient in producing cellulolytic acid, was successfully acquired and shows promise for producing high-level caproic acid. In this study, a bioaugmentation method utilizing Clostridium kluyveri is proposed to enhance caproic acid yield of DCB using rice straw. With exogenous ethanol, bioaugmentation with Clostridium kluyveri significantly improved the caproic acid concentration and selectivity by 7 times and 4.5 times, achieving 12.9 g/L and 55.1 %, respectively. The addition of Clostridium kluyveri introduced reverse ß-oxidation pathway, a more efficient caproic acid production pathway. Meanwhile, bioaugmentation enriched the bacteria proficient in degrading straw and producing short-chain fatty acids, providing more substrates for caproic acid production. This study provides potential bioaugmentation strategies for optimizing caproic acid yield from lignocellulosic biomass.


Assuntos
Caproatos , Clostridium kluyveri , Caproatos/metabolismo , Biomassa , Ácidos Graxos Voláteis/metabolismo , Clostridium kluyveri/metabolismo , Fermentação
14.
ACS Appl Mater Interfaces ; 16(14): 17649-17656, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38552212

RESUMO

Harvesting energy from water droplets has received tremendous attention due to the pursuit of sustainable and green energy resources. The droplet-based electricity generator (DEG) provides an admirable strategy to harvest energy from droplets into electricity. However, most of the DEGs merely generate electricity of alternating current (AC) output rather than direct current (DC) without the utilization of rectifiers, impeding its practical applications in energy storage and power supply. Here, a direct current droplet-based electricity generator (DC-DEG) is developed by the simple configuration of the electrodes. The DC output originates from the dynamical electric double layer (EDL) formed at two electrodes and droplet interfaces where the charging/discharging process of EDL capacitance occurs. Several experiments are exhibited to demonstrate the rationality of the proposed principle. The influence of some factors on the output is investigated for further insight into the DC-DEG device. This work provides a novel strategy to harvest energy from water droplets directly into DC electricity and may expand the application of DEGs in powering electronic devices without the help of rectifiers.

15.
Curr Med Sci ; 44(2): 281-290, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453792

RESUMO

Recent studies have shown that cellular levels of polyamines (PAs) are significantly altered in neurodegenerative diseases. Evidence from in vivo animal and in vitro cell experiments suggests that the cellular levels of various PAs may play important roles in the central nervous system through the regulation of oxidative stress, mitochondrial metabolism, cellular immunity, and ion channel functions. Dysfunction of PA metabolism related enzymes also contributes to neuronal injury and cognitive impairment in many neurodegenerative diseases. Therefore, in the current work, evidence was collected to determine the possible associations between cellular levels of PAs, and related enzymes and the development of several neurodegenerative diseases, which could provide a new idea for the treatment of neurodegenerative diseases in the future.


Assuntos
Doenças Neurodegenerativas , Poliaminas , Animais , Poliaminas/metabolismo , Estresse Oxidativo , Mitocôndrias/metabolismo , Apoptose , Doenças Neurodegenerativas/metabolismo
16.
Clin Lab ; 70(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38469761

RESUMO

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic spread rapidly with considerable morbidity nationwide since China's liberalization in December 2022. Our work has focused on identifying different predictive factors from the laboratory examination of critically ill patients, and forecasting the unfavorable outcome of critically ill patients with COVID-19 through a combined diagnosis of biological markers. METHODS: We conducted a retrospective study at the Department of First Affiliated Hospital of Wenzhou Medical University, China, from December 24, 2022, to January 10, 2023, where 434 critically ill patients who met the inclusion criteria were involved. Machine analysis was employed to search for the parameters with the highest predictive value to calculate COVID-19 mortality by exploiting 66 typical laboratory results. RESULTS: Combined diagnosis of serum albumin (ALB), lactate dehydrogenase (LDH), direct bilirubin (Dbil), ferritin, pulse oxygen saturation (SpO2), and neutrophil count (NEUT#) was evaluated, and the result with the highest predictive value (NEUT#) was selected as the predictor for COVID-19 mortality with a sensitivity of 89.2% and a specificity of 77.4%. CONCLUSIONS: The increased levels of LDH, Dbil, ferritin, and NEUT#, along with lowered ALB and SpO2 levels are the most decisive variables for forecasting the mortality for COVID-19 according to our machine-learning-based model. The combined diagnosis could be used to improve further diagnostic performance.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Estudos Retrospectivos , Estado Terminal , Ferritinas
17.
Huan Jing Ke Xue ; 45(3): 1684-1691, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471880

RESUMO

The large input of mulch film and organic fertilizer have led to increasingly serious microplastic pollution in farmland soil of China. In this study, the microplastic pollution of peanut farmland in Dezhou City, Shandong Province was investigated. The effects of different mulching years (0, 3, 5, and 8 years) and organic fertilizer application on the abundance, particle size, color, and shape of microplastics in farmland soil were analyzed. The results showed that the average abundances of microplastics in peanut soil were 65.33, 316.00, 1 098.67, and 1 346.34 n·kg-1, respectively, after 0, 3, 5, and 8 years of film mulching. The abundance of microplastics decreased with the increase in soil depth. The abundance of microplastics in 0-10, 10-20, and 20-30 cm topsoil was 1 076.00, 603.5, and 440.25 n·kg-1, respectively, and the abundance of microplastics increased significantly with increasing years of film mulching and organic fertilizer application (P<0.05). The particle size of microplastics in the sample plot <1 mm accounted for 77.30% of the total content, and with the increase in film mulching age, the proportion of microplastics with small particle size (<1 mm) increased significantly (P < 0.05). With the increase in soil depth, the proportion of microplastics with small particle size also gradually increased, whereas the application of organic fertilizer had no significant effect on the particle size of microplastics. The color of microplastics in the plot was mainly transparent (49.77%), followed by black (16.35%) and white (16.27%). The planting age and organic fertilizer application had no significant effect on the color of microplastics in the soil (P > 0.05), but the mulching age significantly increased the proportion of transparent microplastics. The abundance proportion of the five types of microplastics were 49.77%, 25.41%, 19.15%, 3.26%, and 2.41%, respectively. These field soil microplastics were mainly composed of polyethylene (PE), polypropylene (PP), and polystyrene (PS) polymers, accounting for 21.37%, 18.57%, and 19.77% of the total, respectively. Therefore, microplastics were widely present in the soil of the peanut field cultivated layer in Dezhou, Shandong, and the applications of mulch film and organic fertilizer were the main source. This study provides an important basis for the prevention and control of soil microplastic pollution in peanut fields.

18.
Sci Rep ; 14(1): 5344, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438458

RESUMO

Chronic rotator cuff injuries (CRCIs) still present a great challenge for orthopaedics surgeons. Many new therapeutic strategies are developed to facilitate repair and improve the healing process. However, there is no reliable animal model for chronic rotator cuff injury research. To present a new valuable rat model for future chronic rotator cuff injuries (CRCIs) repair studies, and describe the changes of CRCIs on the perspectives of histology, behavior and MRI. Sixty male Wistar rats were enrolled and underwent surgery of the left shoulder joint for persistent subacromial impingement. They were randomly divided into experimental group (n = 30, a 3D printed PEEK implant shuttled into the lower surface of the acromion) and sham operation group (n = 30, insert the same implant, but remove it immediately). Analyses of histology, behavior, MRI and inflammatory pain-related genes expression profiles were performed to evaluate the changes of CRCIs. After 2-weeks running, the rats in the experimental group exhibited compensatory gait patterns to protect the injured forelimb from loading after 2-weeks running. After 8-weeks running, the rats in the experimental group showed obvious CRCIs pathological changes: (1) acromion bone hyperplasia and thickening of the cortical bone; (2) supraspinatus muscle tendon of the humeral head: the bursal-side tendon was torn and layered with disordered structure, forming obvious gaps; the humeral-side tendon is partially broken, and has a neatly arranged collagen. Partial fat infiltration is found. The coronal T2-weighted images showed that abnormal tendon-to-bone junctions of the supraspinatus tendon. The signal intensity and continuity were destroyed with contracted tendon. At the nighttime, compared with the sham operation group, the expression level of IL-1ß and COX-2 increased significantly (P = 0063, 0.0005) in the experimental group. The expression of COX-2 in experimental group is up-regulated about 1.5 times than that of daytime (P = 0.0011), but the expression of IL-1ß, TNF-a, and NGF are all down-regulated (P = 0.0146, 0.0232, 0.0161). This novel rat model of chronic rotator cuff injuries has the similar characteristics with that of human shoulders. And it supplies a cost-effective, reliable animal model for advanced tissue engineered strategies and future therapeutic strategies.


Assuntos
Lesões do Manguito Rotador , Humanos , Ratos , Animais , Masculino , Lesões do Manguito Rotador/diagnóstico por imagem , Ratos Wistar , Ciclo-Oxigenase 2 , Manguito Rotador/diagnóstico por imagem , Tendões , Interleucina-1beta
19.
Mater Horiz ; 11(7): 1760-1768, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305088

RESUMO

Personal thermal management (PTM) of fabrics is vital for human health; the ever-changing location of the human body poses a big challenge for fabrics to maintain a favorable metabolic temperature. Herein, a dual-mode thermal management fabric is designed to achieve both cooling and heating functions by regulating simultaneously solar and body radiations. The cooling or heating mode can be exchanged by flipping the fabric without an external energy supply. The passive cooling side consists of an electrospun polyacrylonitrile (PAN) fabric with a hierarchical porous structure, exhibiting high sunlight reflectance (91.42%) and an ∼14 °C temperature decrease under direct sunlight irradiation. The co-existence of nanoscale and microscale pores is proven to be essential for improved cooling performances. The other heating side, coated with an MXene layer, shows high photothermal conversion efficiency (37.5%) and outstanding heating capability outdoors. Furthermore, the contrary mid-infrared emissivity of the two sides (high emissivity of the cooling side while low emissivity of the heating side) leads to the dual-mode passive regulation of body thermal energy. Besides, this fabric demonstrates satisfactory wearability and excellent stability. Our work proposes an energy-saving and cost-effective approach for PTM fabrics potentially suitable for various scenarios (e.g., indoors/outdoors, summer/winter, low/high latitude areas).

20.
J Pediatr Nurs ; 76: 140-149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38402745

RESUMO

BACKGROUND: Returning to school can be challenging for children and adolescents with cancer who have been absent for a long time. As there is little known about the return to school experience of children and adolescents with cancer, this meta-synthesis aimed to describe the experiences of children and adolescent cancer patients as they return to school. METHODS: Seven English databases and three Chinese databases were searched from inception to March 14, 2023. The Joanna Briggs Institute Qualitative Assessment and Review Instrument (JBI-QARI) was used to appraise study quality. Data were synthesized using the Thomas and Harden thematic and content analysis method. RESULTS: Twelve qualitative studies met the inclusion criteria and were analyzed into meta-synthesis. Data synthesis led to constructing four analytical themes and twelve sub-themes. The four major themes constructed were:benefits to school re-entry, barriers to school re-entry, motivators to school re-entry and the adaptation process after returning to school. CONCLUSION: Children and adolescents with cancer were willing to return to education and can adapt to school life over time. But they were faced with challenges, including physical, psychological, and social barriers. Appropriate measures need to be taken to reduce those barriers. IMPLICATIONS TO PRACTICE: Findings can be used to inform future research and interventions to support a successful return to education for children and adolescents with cancer. Healthcare providers should address the needs of children and adolescents at different stages and actively work with schools, hospitals and families to help childhood cancer survivors successfully return to school.


Assuntos
Neoplasias , Pesquisa Qualitativa , Humanos , Adolescente , Criança , Neoplasias/psicologia , Adaptação Psicológica , Feminino , Masculino , Instituições Acadêmicas , Sobreviventes de Câncer/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA