Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Science ; 385(6705): eadl6173, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38991060

RESUMO

Isocitrate dehydrogenase 1 (IDH1) is the most commonly mutated metabolic gene across human cancers. Mutant IDH1 (mIDH1) generates the oncometabolite (R)-2-hydroxyglutarate, disrupting enzymes involved in epigenetics and other processes. A hallmark of IDH1-mutant solid tumors is T cell exclusion, whereas mIDH1 inhibition in preclinical models restores antitumor immunity. Here, we define a cell-autonomous mechanism of mIDH1-driven immune evasion. IDH1-mutant solid tumors show selective hypermethylation and silencing of the cytoplasmic double-stranded DNA (dsDNA) sensor CGAS, compromising innate immune signaling. mIDH1 inhibition restores DNA demethylation, derepressing CGAS and transposable element (TE) subclasses. dsDNA produced by TE-reverse transcriptase (TE-RT) activates cGAS, triggering viral mimicry and stimulating antitumor immunity. In summary, we demonstrate that mIDH1 epigenetically suppresses innate immunity and link endogenous RT activity to the mechanism of action of a US Food and Drug Administration-approved oncology drug.


Assuntos
Evasão da Resposta Imune , Imunidade Inata , Isocitrato Desidrogenase , Neoplasias , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , DNA/metabolismo , Desmetilação do DNA , Metilação de DNA , Elementos de DNA Transponíveis , Epigênese Genética , Glutaratos/metabolismo , Imunidade Inata/genética , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Mutação , Neoplasias/imunologia , Neoplasias/genética , Nucleotidiltransferases/genética , Evasão Tumoral , Evasão da Resposta Imune/genética
2.
bioRxiv ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39026794

RESUMO

Biliary tract cancers (BTCs) are a group of deadly malignancies encompassing intrahepatic and extrahepatic cholangiocarcinoma, gallbladder carcinoma, and ampullary carcinoma. Here, we present the integrative analysis of 63 BTC cell lines via multi-omics clustering and genome- scale CRISPR screens, providing a platform to illuminate BTC biology and inform therapeutic development. We identify dependencies broadly enriched in BTC compared to other cancers as well as dependencies selective to the anatomic subtypes. Notably, cholangiocarcinoma cell lines are stratified into distinct lineage subtypes based on biliary or dual biliary/hepatocyte marker signatures, associated with dependency on specific lineage survival factors. Transcriptional analysis of patient specimens demonstrates the prognostic significance of these lineage subtypes. Additionally, we delineate strategies to enhance targeted therapies or to overcome resistance in cell lines with key driver gene mutations. Furthermore, clustering based on dependencies and proteomics data elucidates unexpected functional relationships, including a BTC subgroup with partial squamous differentiation. Thus, this cell line atlas reveals potential therapeutic targets in molecularly defined BTCs, unveils biologically distinct disease subtypes, and offers a vital resource for BTC research.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39012089

RESUMO

Autosomal recessive hypophosphatemic rickets (HR) type 2 (ARHR2) is a rare form of HR caused by variant of the gene encoding ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1). Our patient presented with a history of unsteady gait and progressively bowing legs that had commenced at the age of 1 year. Laboratory tests revealed an elevated level of fibroblast growth factor 23 (FGF23), hypophosphatemia, and a high urine phosphate level. Radiography revealed the typical features of rickets. Next-generation sequencing identified a previously reported c.783C>G (p.Tyr261Ter) and a novel c.1092-42A>G variant in the ENPP1 gene. The patient was prescribed oral phosphates and active vitamin D and underwent guided growth of both distal femora and proximal tibiae commencing at the age of 3 years. No evidence of generalized arterial calcification was apparent during follow-up, and growth rate was satisfactory.

4.
Dev Growth Differ ; 66(2): 133-144, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38281811

RESUMO

Macrophages play a pivotal role in the response to injury, contributing significantly to the repair and regrowth of damaged tissues. The external lateral line system in aquatic organisms offers a practical model for studying regeneration, featuring interneuromast cells connecting sensory neuromasts. Under normal conditions, these cells remain dormant, but their transformation into neuromasts occurs when overcoming inhibitory signals from Schwann cells and posterior lateral line nerves. The mechanism enabling interneuromast cells to evade inhibition by Schwann cells remains unclear. Previous observations suggest that macrophages physically interact with neuromasts, nerves, and Schwann cells during regeneration. This interaction leads to the regeneration of neuromasts in a subset of zebrafish with ablated neuromasts. To explore whether macrophages achieve this effect through secreted cytokines, we conducted experiments involving tail amputation in zebrafish larvae and tested the impact of cytokine inhibitors on neuromast regeneration. Most injured larvae remarkably regenerated a neuromast within 4 days post-amputation. Intriguingly, removal of macrophages and inhibition of the anti-inflammatory cytokine transforming growth factor-beta (TGF-ß) significantly delayed neuromast regeneration. Conversely, inhibition of the pro-inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) had minor effects on the regeneration process. This study provides insights into how macrophages activate interneuromast cells, elucidating the pathways underlying neuromast regeneration.


Assuntos
Sistema da Linha Lateral , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Fator de Crescimento Transformador beta/farmacologia
5.
Cell Metab ; 36(1): 193-208.e8, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38171333

RESUMO

Metabolic reprogramming is key for cancer development, yet the mechanism that sustains triple-negative breast cancer (TNBC) cell growth despite deficient pyruvate kinase M2 (PKM2) and tumor glycolysis remains to be determined. Here, we find that deficiency in tumor glycolysis activates a metabolic switch from glycolysis to fatty acid ß-oxidation (FAO) to fuel TNBC growth. We show that, in TNBC cells, PKM2 directly interacts with histone methyltransferase EZH2 to coordinately mediate epigenetic silencing of a carnitine transporter, SLC16A9. Inhibition of PKM2 leads to impaired EZH2 recruitment to SLC16A9, and in turn de-represses SLC16A9 expression to increase intracellular carnitine influx, programming TNBC cells to an FAO-dependent and luminal-like cell state. Together, these findings reveal a new metabolic switch that drives TNBC from a metabolically heterogeneous-lineage plastic cell state to an FAO-dependent-lineage committed cell state, where dual targeting of EZH2 and FAO induces potent synthetic lethality in TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Mutações Sintéticas Letais , Glicólise , Carnitina
7.
Nature ; 622(7984): 850-862, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37794185

RESUMO

Immune checkpoint blockade is effective for some patients with cancer, but most are refractory to current immunotherapies and new approaches are needed to overcome resistance1,2. The protein tyrosine phosphatases PTPN2 and PTPN1 are central regulators of inflammation, and their genetic deletion in either tumour cells or immune cells promotes anti-tumour immunity3-6. However, phosphatases are challenging drug targets; in particular, the active site has been considered undruggable. Here we present the discovery and characterization of ABBV-CLS-484 (AC484), a first-in-class, orally bioavailable, potent PTPN2 and PTPN1 active-site inhibitor. AC484 treatment in vitro amplifies the response to interferon and promotes the activation and function of several immune cell subsets. In mouse models of cancer resistant to PD-1 blockade, AC484 monotherapy generates potent anti-tumour immunity. We show that AC484 inflames the tumour microenvironment and promotes natural killer cell and CD8+ T cell function by enhancing JAK-STAT signalling and reducing T cell dysfunction. Inhibitors of PTPN2 and PTPN1 offer a promising new strategy for cancer immunotherapy and are currently being evaluated in patients with advanced solid tumours (ClinicalTrials.gov identifier NCT04777994 ). More broadly, our study shows that small-molecule inhibitors of key intracellular immune regulators can achieve efficacy comparable to or exceeding that of antibody-based immune checkpoint blockade in preclinical models. Finally, to our knowledge, AC484 represents the first active-site phosphatase inhibitor to enter clinical evaluation for cancer immunotherapy and may pave the way for additional therapeutics that target this important class of enzymes.


Assuntos
Imunoterapia , Neoplasias , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteína Tirosina Fosfatase não Receptora Tipo 2 , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Inibidores de Checkpoint Imunológico , Imunoterapia/métodos , Interferons/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 2/antagonistas & inibidores , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
8.
Front Endocrinol (Lausanne) ; 14: 1150498, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37654562

RESUMO

Introduction: The life expectancy of Pompe disease patients has increased due to improved neonatal screening and enzyme replacement therapy. Nevertheless, the potential effect of frequent medical device exposure on pubertal development in these patients is not well understood, so further investigation is warranted. Methods: In this cross-sectional study, we assessed the growth and puberty of nine Pompe disease patients. In addition, to determine the effects of frequent plastic medical device exposure in these patients, we measured urinary phthalate metabolites before and one day after enzyme replacement therapy. Results: Five out of nine patients (55%) with Pompe disease on enzyme replacement therapy had precocious puberty. Patients with precocious puberty had significantly shorter predicted adult heights compared to those with normal puberty (p = 0.014). The levels of mono-2-ethylhexyl phthalate (MEHP) and mono(2-ethyl-5-carboxypentyl) phthalate (MECPP) increased after enzyme replacement therapy, but the average levels of phthalate metabolites did not significantly differ between patients with normal and precocious puberty. Conclusion: Pompe disease patients on enzyme replacement therapy tend to have precocious puberty, which may reduce their adult height. There are no significant differences in urinary phthalate metabolites between normal and precocious puberty patients. Regular follow-up of growth and puberty in Pompe disease patients is important to improve their health outcomes.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Puberdade Precoce , Adulto , Recém-Nascido , Humanos , Doença de Depósito de Glicogênio Tipo II/complicações , Estudos Transversais , Puberdade Precoce/etiologia , Terapia de Reposição de Enzimas
9.
Acta Neurol Taiwan ; 32(3): 88-99, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37674419

RESUMO

The emergence of SARS-CoV-2 has profoundly impacted global society and various aspects of human life. While the pandemic has resulted in disruptions and challenges, it has also accelerated scientific research on viruses and immunology, leading to remarkable progress in vaccine technology and immunization strategies. This review examines the impact of SARS-CoV-2 on pre-existing neuromuscular disorders, and neuromuscular events following SARS-CoV-2 infection, including immune-mediated and critical illness status-related disorders. Furthermore, the review discusses the relationship between SARSCoV- 2 vaccination and neuromuscular complications. The findings highlight the need for further research and understanding to improve patient outcomes. Keywords: SARS-CoV-2, neuromuscular diseases, vaccine.


Assuntos
COVID-19 , Doenças Neuromusculares , Humanos , SARS-CoV-2 , COVID-19/complicações , Doenças Neuromusculares/complicações , Imunização , Pandemias
10.
Orphanet J Rare Dis ; 18(1): 293, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37715271

RESUMO

BACKGROUND: Gaucher disease (GD) is a lysosomal storage disorder characterized by deficient glucocerebrosidase activity that results from biallelic mutations in the GBA1 gene. Its phenotypic variability allows GD to be classified into 3 subtypes based on the presence and extent of neurological manifestations. Enzyme replacement therapy (ERT) has been available for all patients with GD in Taiwan since 1998. Newborn screening (NBS) for GD has been available since 2015. This study attempted to unveil the clinical features of patients diagnosed with GD during different eras in Taiwan. MATERIALS AND METHODS: Data from the health records of two tertiary hospitals responsible for two-thirds of the patients with GD in Taiwan were used. The study population included all patients identified as having GD between 1998, and April 2022, in these two hospitals for review. A total of 42 individuals were included, six of whom were diagnosed by NBS. RESULTS: Our cohort presented a higher proportion of GD3 individuals, both by clinical suspicion and by NBS diagnosis, than that reported worldwide. The major subtypes that were recognized following NBS diagnosis were GD2 and GD3. The majority of GD patients carry at least one p.Leu483Pro variant. The 5-year survival rates were 0% for GD2 patients and 100% for patients with other subtypes. Patients diagnosed during the post-NBS era were free of symptoms on initial presentation, except for those with the GD2 subtype. For those diagnosed earlier, ERT was shown to be effective in terms of improved hemograms and prevented bone crises. However, the neurological symptoms in GD3 patients progressed despite ERT intervention. CONCLUSION: ERT is essential in reversing the hematological presentations and preventing the skeletal complications of GD. Timely diagnosis of GD with NBS allows for early intervention with ERT to prevent disease progression and complications. However, the need for effective intervention for neurological dysfunction remains unmet.


Assuntos
Doença de Gaucher , Doenças por Armazenamento dos Lisossomos , Recém-Nascido , Humanos , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Taiwan , Progressão da Doença , Terapia de Reposição de Enzimas
11.
J Chin Med Assoc ; 86(11): 960-965, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37713318

RESUMO

BACKGROUND: Brain-derived neurotrophic factor (BDNF) has been implicated in the pathophysiology of Alzheimer's disease (AD), and decreased peripheral levels of this protein are associated with an increased risk of developing the disease. This study focuses on whether serum BDNF levels could be used as a predictor of AD progression. METHODS: In this longitudinal observational study, we recruited cognition normal participants (N = 98) and AD (N = 442) from the Clinic at the Taipei Veterans General Hospital. We conducted a mini-mental status exam, a 12-item memory test, a categorical verbal fluency test, and a modified 15-item Boston naming test. A Serum BDNF level and apolipoprotein E ( APOE ) allele status were measured. The AD patients were followed prospectively. Based on the difference of MMSE scores, these patients were divided into fast decliners (decline ≥ 3/y) and slow decliners (MMSE decline < 3/y). Logistic regression was conducted to examine the impact of serum BDNF levels and other factor on the likelihood of AD patients being slow decliners. Pearson's correlation was used to estimate the relationship between serum BDNF levels and the score of neuropsychological tests. RESULTS: In a logistic regression model containing serum BDNF levels, age, sex, APOE4 carrier status, education levels, and baseline MMSE score, higher serum BDNF levels were associated with a slower rate of cognitive decline in the AD group. Serum BDNF levels positively correlated with the results of multiple neuropsychological tests. CONCLUSION: BDNF is a protective factor against AD progression and likely plays a role in establishing a link between AD pathology and clinical manifestations.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/psicologia , Fator Neurotrófico Derivado do Encéfalo , Cognição , Progressão da Doença
12.
NPJ Genom Med ; 8(1): 27, 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741878

RESUMO

Lysosomal storage diseases (LSDs) are a group of metabolic disorders resulting from a deficiency in one of the lysosomal hydrolases. Most LSDs are inherited in an autosomal or X-linked recessive manner. As LSDs are rare, their true incidence in Taiwan remains unknown. In this study, we used high-coverage whole-genome sequencing data from 1,495 Taiwanese individuals obtained from the Taiwan Biobank. We found 3826 variants in 71 genes responsible for autosomal recessive LSDs. We first excluded benign variants by allele frequency and other criteria. As a result, 270 variants were considered disease-causing. We curated these variants using published guidelines from the American College of Medical Genetics and Genomics (ACMG). Our results revealed a combined incidence rate of 13 per 100,000 (conservative estimation by pathologic and likely pathogenic variants; 95% CI 6.92-22.23) to 94 per 100,000 (extended estimation by the inclusion of variants of unknown significance; 95% CI 75.96-115.03) among 71 autosomal recessive disease-associated genes. The conservative estimations were similar to those in published clinical data. No disease-causing mutations were found for 18 other diseases; thus, these diseases are likely extremely rare in Taiwan. The study results are important for designing screening and treatment methods for LSDs in Taiwan and demonstrate the importance of mutation curation to avoid overestimating disease incidences from genomic data.

13.
bioRxiv ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37745514

RESUMO

Sympathetic nerves co-develop with their target organs and release neurotransmitters to stimulate their functions after maturation. Here, we provide the molecular mechanism that during sweat gland morphogenesis, neurotransmitters released from sympathetic nerves act first to promote sweat duct elongation via norepinephrine and followed by acetylcholine to specify sweat gland stem cell fate, which matches the sequence of neurotransmitter switch. Without neuronal signals during development, the basal cells switch to exhibit suprabasal (luminal) cell features. Sarcolipin (SLN), a key regulator of sarcoendoplasmic reticulum (SR) Ca 2+ -ATPase (SERCA), expression is significantly down-regulated in the sweat gland myoepithelial cells upon denervation. Loss of SLN in sweat gland myoepithelial cells leads to decreased intracellular Ca 2+ over time in response to ACh stimulation, as well as upregulation of luminal cell features. In cell culture experiments, we showed that contrary to the paradigm that elevation of Ca 2+ promote epidermal differentiation, specification of the glandular myoepithelial (basal) cells requires high Ca 2+ while lowering Ca 2+ level promotes luminal (suprabasal) cell fate. Our work highlights that neuronal signals not only act transiently for mature sweat glands to function, but also exert long-term impact on glandular stem cell specification through regulating intracellular Ca 2+ dynamics.

15.
Gut Pathog ; 15(1): 24, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37218009

RESUMO

BACKGROUND: Hepatitis B virus (HBV) causes chronic hepatitis B (CHB), liver cirrhosis, and hepatocellular carcinoma. The evolution of human gut microbiota during the progression of HBV-related liver diseases remains unclear. Therefore, we prospectively enrolled patients with HBV-related liver diseases and healthy individuals. Through 16S ribosomal RNA amplicon sequencing, we characterized the gut microbiota of the participants and predicted the functions of microbial communities. RESULTS: We analyzed the gut microbiota of 56 healthy controls and 106 patients with HBV-related liver disease [14 with resolved HBV infection, 58 with CHB, and 34 with advanced liver disease (15 with liver cirrhosis and 19 with hepatocellular carcinoma)]. Patients with HBV-related liver disease exhibited a higher degree of bacterial richness (all P < 0.05) than did healthy controls. Beta diversity analyses revealed a distinct clustering pattern between healthy controls and patients with HBV-related liver disease (all P < 0.05). The composition of bacteria (from the phylum level to the genus level) varied across the stages of liver disease. Linear discriminant analysis effect size revealed multiple taxa that differ significantly in abundance between healthy controls and patients with HBV-related liver disease; however, fewer differences were observed among patients with resolved HBV infection, those with CHB, and those with advanced liver disease. The ratio of Firmicutes to Bacteroidetes was increased in all three patient groups compared with the ratio in healthy controls (all P < 0.001). The analysis of the sequencing data by using PICRUSt2 revealed the changes in microbial functions with disease progression. CONCLUSIONS: The diversity and composition of gut microbiota appear to vary significantly between healthy controls and patients at different stages of HBV-related liver disease. The understanding of gut microbiota may provide novel therapeutic options in these patients.

16.
Augment Altern Commun ; 39(2): 73-83, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37083492

RESUMO

The purpose of this study was to select a core vocabulary list obtained from Mandarin Chinese-speaking Taiwanese persons without disabilities. Mandarin Chinese is dominant and official language of Taiwan. A total of 28 participants, equally divided among seven age groups, were recruited for the study. In all, 112 samples across different communication contexts were collected. Results indicated that 100 core words selected had coverage of 66.7% of the entire composite sample. The proportion of function words versus content words in the top 100 core words was 11% and 89%, respectively. The core vocabulary was categorized into eight parts of speech, including nouns, pronouns, numbers, adverbs, determiners, prepositions, adjectives, and verbs. Implications, limitations, and further research are discussed.


Assuntos
Auxiliares de Comunicação para Pessoas com Deficiência , Transtornos da Comunicação , Humanos , Vocabulário , População do Leste Asiático , Idioma
17.
J Formos Med Assoc ; 122(7): 564-573, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36872131

RESUMO

BACKGROUND/PURPOSE: Distinct hepatitis relapse has been observed after discontinuing entecavir (ETV) or tenofovir disoproxil fumarate (TDF) therapy in chronic hepatitis B (CHB) patients. End-of-therapy (EOT) serum cytokines were compared and used for outcome prediction. METHODS: A total of 80 non-cirrhotic CHB patients in a tertiary medical center in Taiwan who discontinued ETV (n = 51) or TDF (n = 29) therapy after fulfilling the APASL guidelines were prospectively enrolled. Serum cytokines were measured at EOT and 3rd month afterwards. Multivariable analysis was performed to predict virological relapse (VR, HBV DNA >2000 IU/mL), clinical relapse (CR, VR and alanine aminotransferase > 2-fold upper limit of normal) and hepatitis B surface antigen (HBsAg) seroclearance. RESULTS: Compared with TDF group, ETV stoppers had greater interleukin 5 (IL-5), IL-12 p70, IL-13, IL-17 A and tumor necrosis factor alpha (TNF-alpha) (all P < 0.05) at EOT. Older age, TDF use, higher EOT HBsAg and IL-18 (Hazard ratio [HR], 1.01; 95% CI, 1.00-1.02) levels at EOT predicted VR, while older age, higher EOT HBsAg and IL-7 (HR, 1.25; 95% CI, 1.00-1.56) levels predicted CR. In TDF stoppers, higher IL-7 (HR, 1.29; 95% CI, 1.05-1.60) and IL-18 (HR, 1.02; 95% CI, 1.00-1.04) levels predicted VR, while IL-7 (HR, 1.34; 95% CI, 1.08-1.65) and interferon-gamma (IFN-gamma) (HR, 1.08; 95% CI, 1.02-1.14) levels predicted CR. A lower EOT HBsAg level was associated with HBsAg seroclearance. CONCLUSION: Distinct cytokine profiles were observed after stopping ETV or TDF. Higher EOT IL-7, IL-18, and IFN-gamma could be probable predictors for VR and CR in patients discontinuing NA therapies.


Assuntos
Hepatite B Crônica , Humanos , Tenofovir/uso terapêutico , Antivirais/uso terapêutico , Antígenos de Superfície da Hepatite B , Interleucina-18/uso terapêutico , Interleucina-7/uso terapêutico , Vírus da Hepatite B/genética , Interferon gama/uso terapêutico , Recidiva , Resultado do Tratamento , Antígenos E da Hepatite B , DNA Viral
18.
Nat Neurosci ; 26(4): 542-554, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36941428

RESUMO

Reactive astrocytes play an important role in neurological diseases, but their molecular and functional phenotypes in epilepsy are unclear. Here, we show that in patients with temporal lobe epilepsy (TLE) and mouse models of epilepsy, excessive lipid accumulation in astrocytes leads to the formation of lipid-accumulated reactive astrocytes (LARAs), a new reactive astrocyte subtype characterized by elevated APOE expression. Genetic knockout of APOE inhibited LARA formation and seizure activities in epileptic mice. Single-nucleus RNA sequencing in TLE patients confirmed the existence of a LARA subpopulation with a distinct molecular signature. Functional studies in epilepsy mouse models and human brain slices showed that LARAs promote neuronal hyperactivity and disease progression. Targeting LARAs by intervention with lipid transport and metabolism could thus provide new therapeutic options for drug-resistant TLE.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Humanos , Camundongos , Animais , Astrócitos/metabolismo , Progressão da Doença , Modelos Animais de Doenças , Lipídeos , Apolipoproteínas E/metabolismo , Hipocampo/metabolismo
19.
ACS Omega ; 8(11): 10419-10425, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36969417

RESUMO

Reducing the contact resistance is one of the major challenges in developing transistors based on two-dimensional materials. In this study, we perform first-principles quantum-transport calculations by adopting a novel type of partially sulfur-replaced edge contact metal/WSX/WS2 in order to lower the Schottky barrier height and in turn reduce the contact resistance. Here, the sulfur replacements produce a segment of the metamaterial WSX (X = P, As, F, and Cl), using group V or halogen atoms to substitute sulfur atoms on one side of a WS2 monolayer. We further compare the effects of such sulfur replacements on the interface metallization and bonding. Such WSX-buffered contacts exhibit contact resistances as low as 142 and 173 Ω·µm for the p-type Pt/WSP/WS2 and n-type Ti/WSCl/WS2 edge contacts, respectively. Moreover, ab initio molecular dynamics is employed to observe a stable standalone WSX monolayer at room temperature.

20.
Ann N Y Acad Sci ; 1523(1): 38-50, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36960914

RESUMO

Immunometabolism considers the relationship between metabolism and immunity. Typically, researchers focus on either the metabolic pathways within immune cells that affect their function or the impact of immune cells on systemic metabolism. A more holistic approach that considers both these viewpoints is needed. On September 5-8, 2022, experts in the field of immunometabolism met for the Keystone symposium "Immunometabolism at the Crossroads of Obesity and Cancer" to present recent research across the field of immunometabolism, with the setting of obesity and cancer as an ideal example of the complex interplay between metabolism, immunity, and cancer. Speakers highlighted new insights on the metabolic links between tumor cells and immune cells, with a focus on leveraging unique metabolic vulnerabilities of different cell types in the tumor microenvironment as therapeutic targets and demonstrated the effects of diet, the microbiome, and obesity on immune system function and cancer pathogenesis and therapy. Finally, speakers presented new technologies to interrogate the immune system and uncover novel metabolic pathways important for immunity.


Assuntos
Neoplasias , Humanos , Neoplasias/metabolismo , Sistema Imunitário , Redes e Vias Metabólicas , Obesidade/terapia , Obesidade/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA