RESUMO
Patients with depression are more likely to have chronic gastrointestinal (GI) symptoms than the general population, but such symptoms are considered only somatic symptoms of depression and lack special attention. There is a chronic lack of appropriate diagnosis and effective treatment for patients with depression accompanied by GI symptoms, and studying the association between depression and GI disorders (GIDs) is extremely important for clinical management. There is growing evidence that depression is closely related to the microbiota present in the GI tract, and the microbiota-gut-brain axis (MGBA) is creating a new perspective on the association between depression and GIDs. Identifying and treating GIDs would provide a key opportunity to prevent episodes of depression and may also improve the outcome of refractory depression. Current studies on depression and the microbially related gut-brain axis (GBA) lack a focus on GI function. In this review, we combine preclinical and clinical evidence to summarize the roles of the microbially regulated GBA in emotions and GI function, and summarize potential therapeutic strategies to provide a reference for the study of the pathomechanism and treatment of depression in combination with GI symptoms.
RESUMO
Objectives: This study aimed to observe the intervention of Weizhuan'an prescription on rats with precancerous lesions of gastric cancer (PLGC) as well as its regulation on gastric mucosal microflora and inflammatory factors and explore the pharmacodynamic mechanisms of Weizhuan'an Formula. Methods: The rats were classified into the blank control group (BCG); low-, medium-, and high-dose groups of Weizhuan'an prescription (LDG, MDG, and HDG, respectively); and natural recovery group (NRG) at random. The rats in the traditional Chinese medicine (TCM) group were given corresponding doses of Weizhuan'an formula, while the rats in the NRG and BCG were given an equivalent volume of distilled water for 12 weeks. After that, gastric mucosa samples of rats were collected to observe the general and pathological changes in the gastric mucosa; the changes in gastric mucosal microflora were detected by 16S rDNA amplicon sequencing, and the inflammatory factors were analyzed by cytokine antibody microarray and Western blotting. Results: The results suggest that compared with the BCG, the pathology of gastric mucosa and gastric mucosal microflora and inflammatory factors in rats with PLGC have changed significantly, while Weizhuan'an formula effectively improved them, especially in the MDG and HDG (p < 0.05). Compared with the NRG, the abundance of probiotics such as Lactobacillus and Veillonella were increased, while the abundance of pathogens such as Proteobacteria and Pseudomonas was decreased (p < 0.05, p < 0.01), and the relative contents of IL-2, IL-4, IL-13, and MCP-1 in gastric mucosa were decreased (p < 0.05). Moreover, it can upregulate the DNA-binding transcriptional regulator, ABC type multidrug transport system, and related enzymes and affect the signaling pathways such as viral protein interaction with cytokine and cytokine receptor and T cell receptor signaling pathway significantly (p < 0.05, p < 0.01), which can promote drug absorption and utilization and repair damaged gastric mucosa. Conclusion: The study confirmed that Weizhuan'an prescription can treat rats with PLGC by regulating gastric mucosal microflora and inflammatory factors.
RESUMO
Macrophage engineering has emerged as a promising approach for modulating the anti-tumor immune response in cancer therapy. However, the spatiotemporal control and real-time feedback of macrophage regulatory process is still challenging, leading to off-targeting effect and delayed efficacy monitoring therefore raising risk of immune overactivation and serious side effects. Herein, a focused ultrasound responsive immunomodulator-loaded optical nanoplatform (FUSION) is designed to achieve spatiotemporal control and status reporting of macrophage engineering in vivo. Under the stimulation of focused ultrasound (FUS), the immune agonist encapsulated in FUSION can be released to induce selective macrophage M1 phenotype differentiation at tumor site and the near-infrared mechanoluminescence of FUSION is generated simultaneously to indicate the initiation of immune activation. Meanwhile, the persistent luminescence of FUSION is enhanced due to hydroxyl radical generation in the pro-inflammatory M1 macrophages, which can report the effectiveness of macrophage regulation. Then, macrophages labeled with FUSION as a living immunotherapeutic agent (FUSION-M) are utilized for tumor targeting and focused ultrasound activated, immune cell-based cancer therapy. By combining the on-demand activation and feedback to form a closed loop, the nanoplatform in this work holds promise in advancing the controllability of macrophage engineering and cancer immunotherapy for precision medicine.
RESUMO
Nanothermometers enable the detection of temperature changes at the microscopic scale, which is crucial for elucidating biological mechanisms and guiding treatment strategies. However, temperature monitoring of micron-scale structures in vivo using luminescent nanothermometers remains challenging, primarily due to the severe scattering effect of biological tissue that compromises the imaging resolution. Herein, a lanthanide luminescence nanothermometer with a working wavelength beyond 1500 nm is developed to achieve high-resolution temperature imaging in vivo. The energy transfer between lanthanide ions (Er3+ and Yb3+) and H2O molecules, called the environment quenching assisted downshifting process, is utilized to establish temperature-sensitive emissions at 1550 and 980 nm. Using an optimized thin active shell doped with Yb3+ ions, the nanothermometer's thermal sensitivity and the 1550 nm emission intensity are enhanced by modulating the environment quenching assisted downshifting process. Consequently, minimally invasive temperature imaging of the cerebrovascular system in mice with an imaging resolution of nearly 200 µm is achieved using the nanothermometer. This work points to a method for high-resolution temperature imaging of micron-level structures in vivo, potentially giving insights into research in temperature sensing, disease diagnosis, and treatment development.
Assuntos
Elementos da Série dos Lantanídeos , Animais , Camundongos , Elementos da Série dos Lantanídeos/química , Temperatura , Luminescência , Diagnóstico por Imagem , ÍonsRESUMO
In vivo transmembrane-voltage detection reflected the electrophysiological activities of the biological system, which is crucial for the diagnosis of neuronal disease. Traditional implanted electrodes can only monitor limited regions and induce relatively large tissue damage. Despite emerging monitoring methods based on optical imaging have access to signal recording in a larger area, the recording wavelength of less than 1000 nm seriously weakens the detection depth and resolution in vivo. Herein, a Förster resonance energy transfer (FRET)-based nano-indicator, NaYbF4:Er@NaYF4@Cy7.5@DPPC (Cy7.5-ErNP) with emission in the near-infrared IIb biological window (NIR-IIb, 1500-1700 nm) is developed for transmembrane-voltage detection. Cy7.5 dye is found to be voltage-sensitive and is employed as the energy donor for the energy transfer to the lanthanide nanoparticle, NaYbF4:Er@NaYF4 (ErNP), which works as the acceptor to achieve electrophysiological signal responsive NIR-IIb luminescence. Benefiting from the high penetration and low scattering of NIR-IIb luminescence, the Cy7.5-ErNP enables both the visualization of action potential in vitro and monitoring of Mesial Temporal lobe epilepsy (mTLE) disease in vivo. This work presents a concept for leveraging the lanthanide luminescent nanoprobes to visualize electrophysiological activity in vivo, which facilitates the development of an optical nano-indicator for the diagnosis of neurological disorders.
Assuntos
Transferência Ressonante de Energia de Fluorescência , Nanopartículas , Animais , Transferência Ressonante de Energia de Fluorescência/métodos , Imagem Óptica/métodos , Camundongos , Fenômenos Eletrofisiológicos/fisiologia , Raios Infravermelhos , Humanos , Masculino , Ratos , Potenciais de Ação/fisiologia , Corantes FluorescentesRESUMO
The immune regulation of the lymphatic system, especially the lymph node (LN), is of great significance for the treatment of diseases and the inhibition of pathogenic organisms spreading in the body. However, achieving precise spatiotemporal control of immune cell activation in LN inâ vivo remains a challenge due to tissue depth and off-target effects. Furthermore, minimally invasive and real-time feedback methods to monitor the regulation of the immune system in LN are lacking. Here, focused ultrasound responsive immunomodulator loaded nanoplatform (FURIN) with near-infrared II (NIR-II) luminescence is designed to achieve spatiotemporally controllable immune activation in LN inâ vivo. The NIR-II persistent luminescence of FURIN can track its delivery in LN through bioimaging. Under focused ultrasound (FUS) stimulation, the immunomodulator encapsulated in FURIN can be released locally in the LN to activate immune cells such as dendritic cells and the NIR-II mechanoluminescence of FURIN provides real-time optical feedback signals for immune activation. This work points to a FUS mediated, spatiotemporal selective immune activation strategy inâ vivo with the feedback control of luminescence signals via ultrasound responsive nanocomposite, which is of great significance in improving the efficacy and reducing the side effect of immune regulation for the development of potential immunotherapeutic methods in the future.
Assuntos
Furina , Linfonodos , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Linfonodos/cirurgia , Luminescência , Adjuvantes ImunológicosRESUMO
Using advanced bioinformatics techniques, we conducted an analysis of ferroptosis-related genes (FRGs) in precancerous lesions of gastric cancer (PLGC). We also investigated their connection to immune cell infiltration and diagnostic value, ultimately identifying new molecular targets that could be used for PLGC patient treatment. The Gene Expression Omnibus (GEO) and FerrDb V2 databases were used to identify FRGs. These genes were analysed via ClueGO pathways and Gene Ontology (GO) enrichment analysis, as well as single-cell dataset GSE134520 analysis. A machine learning model was applied to identify hub genes associated with ferroptosis in PLGC patients. Receiver Operating Characteristics (ROC) curve analysis was conducted to verify the diagnostic efficacy of these genes, and a PLGC diagnosis model nomogram was established based on hub genes. R software was utilized to conduct functional, pathway, gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) on the identified diagnostic genes. Hub gene expression levels and survival times in gastric cancer were analysed using online databases to determine the prognostic value of these genes. MCPcounter and single-sample gene set enrichment analysis (ssGSEA) algorithms were used to investigate the correlation between hub genes and immune cells. Finally, noncoding RNA regulatory mechanisms and transcription factor regulatory networks for hub genes were mapped using multiple databases. Eventually, we identified 23 ferroptosis-related genes in PLGC. Enrichment analyses showed that ferroptosis-related genes were closely associated with iron uptake and transport and ferroptosis in the development of PLGC. After differential analysis using machine learning algorithms, we identified four hub genes in PLGC patients, including MYB, CYB5R1, LIFR and DPP4. Consequently, we established a ferroptosis diagnosis model nomogram. GSVA and GSEA mutual verification analysis helped uncover potential regulatory mechanisms of hub genes. MCPcounter and ssGSEA analysed immune infiltration in the disease and indicated that B cells and parainflammation played an important role in disease progression. Finally, we constructed noncoding RNA regulatory networks and transcription factor regulatory networks. Our study identified ferroptosis-related diagnostic genes and therapeutic targets for PLGC, providing novel insights and a theoretical foundation for research into the molecular mechanisms, clinical diagnosis, and treatment of this disease.
Assuntos
Ferroptose , Lesões Pré-Cancerosas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Ferroptose/genética , Lesões Pré-Cancerosas/genética , BiomarcadoresRESUMO
Vascular endothelial growth factor (VEGF) is the main regulator of physiological angiogenesis during embryonic development, bone growth, and reproductive function, and it also participates in a series of pathological changes. Traditional Chinese medicine (TCM), with a history of more than 2000 years, has been widely used in clinical practice, while the exploration of its mechanisms has only begun. This review summarizes the research of recent years on the influence of TCM on VEGF. It is found that many Chinese medicines and recipes have a regulatory effect on VEGF, indicating that Chinese medicine has broad prospects as a complementary and alternative therapy, providing new treatment ideas for clinical applications and the theoretical basis for research on the mechanisms of TCM.
Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Fator A de Crescimento do Endotélio VascularRESUMO
With the recent upsurge of studies in the field of microbiology, we have learned more about the complexity of the gastrointestinal microecosystem. More than 30 genera and 1000 species of gastrointestinal microflora have been found. The structure of the normal microflora is relatively stable, and is in an interdependent and restricted dynamic equilibrium with the body. In recent years, studies have shown that there is a potential relationship between gastrointestinal microflora imbalance and gastric cancer (GC) and precancerous lesions. So, restoring the balance of gastrointestinal microflora is of great significance. Moreover, intervention in gastric premalignant condition (GPC), also known as precancerous lesion of gastric cancer (PLGC), has been the focus of current clinical studies. The holistic view of traditional Chinese medicine (TCM) is consistent with the microecology concept, and oral TCM can play a two-way regulatory role directly with the microflora in the digestive tract, restoring the homeostasis of gastrointestinal microflora to prevent canceration. However, large gaps in knowledge remain to be addressed. This review aims to provide new ideas and a reference for clinical practice.
Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Lesões Pré-Cancerosas , Neoplasias Gástricas , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Medicina Tradicional Chinesa , Lesões Pré-Cancerosas/patologia , Neoplasias Gástricas/patologiaRESUMO
WHAT IS KNOWN AND THE OBJECTIVE: Our previous studies have shown that saponins of Sanguisorba parviflora (Maxim) Takeda (Sp. T) relieved cyclophosphamide-induced myelosuppression in mice with leukopenia. The hematopoietic cell-specific protein 1-associated protein X-1 (HAX-1) participated in the survival of neutrophils through the regulation of mitochondrial function. This study aimed to comprehensively identify the role of HAX-1 in Sp. T to alleviate leukopenia. METHODS: HAX-1 expression was examined in the peripheral blood neutrophils using real-time polymerase chain reaction (PCR), Western blot analysis and immunohistochemical staining. Neutrophil apoptosis was measured by flow cytometry. Mitochondrial function was evaluated via reactive oxygen species (ROS) generation and mitochondrial membrane potential (ΔΨm) integrity. RESULTS AND DISCUSSION: Our study indicated that the expression of the HAX-1 gene was significantly decreased in the peripheral blood neutrophils of leukopenia patients compared with healthy donors. The saponins of Sp. T induced HAX-1 expression and promoted myeloid progenitor cell (mEB8-ER cell) viability, while overexpression of HAX-1 reduced the production of reactive oxygen species (ROS) and maintained the integrity of the mitochondrial membrane potential. Cyclophosphamide-induced mitochondrial dysfunction and apoptosis could be abrogated by treatment with Sp. T or the addition of metformin. WHAT IS NEW AND OUR CONCLUSION: Our data support a mechanism where Sp. T protects against chemotherapy-induced leukopenia by regulating HAX-1 gene expression in a mitochondrial-dependent manner.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Ciclofosfamida/efeitos adversos , Leucopenia/induzido quimicamente , Leucopenia/tratamento farmacológico , Sanguisorba/química , Saponinas/farmacologia , Adulto , Apoptose/efeitos dos fármacos , Feminino , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Pessoa de Meia-Idade , Neutrófilos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismoRESUMO
WHAT IS KNOWN AND OBJECTIVE: We have previously shown that the saponins of Sanguisorba parviflora (Maxim.) Takeda (Sp. T) relieved cyclophosphamide-induced myelosuppression in leukopenic mice. Haematopoietic cell-specific protein 1-associated protein X-1 (HAX-1) participated in the survival of neutrophils through the regulation of mitochondrial function. The aim of the present study was to comprehensively identify the role of HAX-1 in the mechanism of leukopenia alleviation by Sp. T. METHODS: HAX-1 gene and protein expression levels in peripheral blood neutrophils were examined using real-time quantitative reverse transcription-polymerase chain reaction, western blot and immunohistochemical assays. Neutrophil apoptosis was measured using flow cytometry. Mitochondrial function was determined via assessments of the reactive oxygen species (ROS) generation and mitochondrial membrane potential (ΔΨm) integrity levels. RESULTS AND DISCUSSION: The HAX-1 gene expression level in the peripheral blood neutrophils was significantly lower in patients with leukopenia than in healthy donors. The saponins of Sp. T induced HAX-1 expression and promoted myeloid progenitor cell (mEB8-ER cell) viability. HAX-1 overexpression reduced the production of ROS and maintained ΔΨm integrity. Cyclophosphamide-induced mitochondrial dysfunction and apoptosis could be abrogated by treatment with Sp. T or metformin. WHAT IS NEW AND CONCLUSION: Our data suggest a mechanism through which Sp. T protects against chemotherapy-induced leukopenia by regulating HAX-1 gene expression in a mitochondrial-dependent manner.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Ciclofosfamida/efeitos adversos , Leucopenia/induzido quimicamente , Leucopenia/tratamento farmacológico , Sanguisorba/química , Saponinas/farmacologia , Adulto , Apoptose/efeitos dos fármacos , Feminino , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Pessoa de Meia-Idade , Células Progenitoras Mieloides/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismoRESUMO
BACKGROUND: Stomach adenocarcinoma (STAD) is one of the most common malignant tumors. The Janus kinases (JAKs) play a significant part in cellular biological process, inflammation, and immunity. The roles of JAKs in STAD are still not systematically described. METHODS: A series of bioinformatics tools were used to clarify the role of JAKs in STAD. RESULTS: JAK3/TYK2 levels were significantly increased in STAD during subgroup analyses based on gender, tumor grade, cancer stages, and nodal metastasis status. STAD patients with high levels of JAK3/TYK2 had poor overall survival, postprogression survival, and first progression. Immune infiltration revealed a significant correlation between JAK3/TYK2 expression and the abundance of immune cells as well as immune biomarker expression in STAD. JAK3/TYK2 was associated with the adaptive immune response, chemokine signaling pathway, and JAK-STAT signaling pathway. CONCLUSIONS: JAK3 and TYK2 serve as prognostic biomarkers and are associated with immune infiltration in STAD.
Assuntos
Adenocarcinoma , Janus Quinase 3/genética , Neoplasias Gástricas , TYK2 Quinase/genética , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Biomarcadores Tumorais/genética , Feminino , Humanos , Masculino , Invasividade Neoplásica/diagnóstico , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Prognóstico , Transdução de Sinais/genética , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologiaRESUMO
Increasing evidence has suggested the important role of lncRNAs in the progression of triple-negative breast cancer (TNBC). In the current study, we first demonstrated that the expression of Airn was reduced in TNBC tissues and cells. Our data showed that the level of Airn was reduced in TNBC tissues and cell lines compared with that of normal control. Furthermore, silencing of Airn markedly enhanced MDA-MB-231 cell migration. Meanwhile, knockdown of Airn significantly increased MDA-MB-231 cell invasion. Western blot analysis showed that knockdown of Airn markedly enhanced the activation of Wnt/ß-catenin/mTOR/PI3K in both MDA-MB-231 cells. Moreover, real time PCR analysis showed that the mRNA level of IGF2R was significantly enhanced when Airn was silenced in MDA-MB-231 cells. In addition, overexpression of IGF2R significantly increased MDA-MB-231 cell migration and invasion. To further explore whether Airn activated Wnt/ß-catenin/mTOR/PI3K signaling independent of IGF-2R, a specific siRNA targeting IGF2R was selected. Western blot analysis showed that Wnt/ß-catenin/mTOR/PI3K signaling could be largely activated in MDA-MB-231 cells transfected with siRNA targeting Airn, even when the protein level of IGF2R was silenced. In summary, decreased expression of lncRNA Aim enhanced the malignant invasion of triple-negative breast cancer cells mainly by activating Wnt/ß-catenin/mTOR/PI3K signaling independent of Igf2R.
Assuntos
Neoplasias da Mama/patologia , Invasividade Neoplásica/genética , RNA Longo não Codificante/biossíntese , Neoplasias de Mama Triplo Negativas/patologia , Via de Sinalização Wnt/efeitos dos fármacos , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Fosfatidilinositol 3-Quinases/genética , RNA Longo não Codificante/genética , Serina-Treonina Quinases TOR/genética , Transfecção , Neoplasias de Mama Triplo Negativas/genética , beta Catenina/genéticaRESUMO
PURPOSE: Thermal ablation has been used to manage liver malignancy. This study aimed to assess histological changes in rat liver after microwave ablation (MWA) and to investigate whether thermal damage caused by MWA on surrounding liver tissue enhances the efficiency of liver gene transfer. METHODS: MWA was applied to rat liver, and the pathological tissue and ultrastructural changes were evaluated. Green fluorescent protein (GFP) and Renilla luciferase-expressing plasmids were administered to liver tissues by direct injection. GFP expression in liver tissue was analysed in frozen sections using an inverted fluorescence microscope, and Renilla luciferase expression in target tissue was determined using a luminometer. RESULTS: Tissue demarcations were observed in liver tissue after ablation, and a transition zone with morphological changes was present between necrotic and normal tissue. Hepatocytes in the transition zone showed decreased numbers of microvilli on cell surfaces and increased extracellular space. GFP expression was observed in the transition zone after MWA and plasmid injection and lasted up to 7 days post-ablation. Both the fluorescence and luminescence levels in the transition zone of the liver tissue were significantly higher than those in the untreated tissue (P < 0.001). CONCLUSIONS: Direct plasmid injection to the liver tissue of the transition zone after MWA can achieve effective gene transfection. These findings provide an experimental basis for exploring MWA-assisted target gene transfer for cancer gene therapy.