Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Med Virol ; 96(3): e29487, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38482901

RESUMO

Human norovirus (HuNoV) is the most predominant viral agents of acute gastroenteritis. Point-of-care testing (POCT) based on lateral flow immunochromatography (LIFC) has become an important tool for rapid diagnosis of HuNoVs. However, low sensitivity and lack of quantitation are the bottlenecks of traditional LIFC. Thus, we established a rapid and accurate technique that combined immunomagnetic enrichment (IM) with LFIC to identify GII HuNoVs in fecal specimens. Before preparing immunofluorescent nanomagnetic microspheres and achieving the effect of HuNoV enrichment in IM and fluorescent signal in LFIC, amino-functionalized magnetic beads (MBs) and carboxylated quantum dots (QDs) were coupled at a mass ratio of 4:10. Anti-HuNoV monoclonal antibody was then conjugated with QDs-MB. The limit of detection was 1.56 × 104 copies/mL, and the quantitative detection range was 1.56 × 104 copies/mL-1 × 106 copies/mL under optimal circumstances. The common HuNoV genotypes GII.2, GII.3, GII.4, and GII.17 can be detected, there was no cross-reaction with various enteric viruses, including rotavirus, astrovirus, enterovirus, and sapovirus. A comparison between IM-LFIC and RT-qPCR for the detection of 87 fecal specimens showed a high level of agreement (kappa = 0.799). This suggested that the method is rapid and sensitive, making it a promising option for point-of-care testing in the future.


Assuntos
Infecções por Caliciviridae , Gastroenterite , Norovirus , Rotavirus , Sapovirus , Humanos , Norovirus/genética , Microesferas , Rotavirus/genética , Sapovirus/genética , Fezes , Infecções por Caliciviridae/diagnóstico
2.
Int J Food Microbiol ; 384: 109957, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36265220

RESUMO

Oysters and mussels are important vectors for norovirus (NoV). An efficient pretreatment method for NoV detection in oysters based on ISO 15216-2:2019 was established in our previous work, but its effectiveness for other types of shellfish remains unknown. Therefore, this study systematically compared the differences between the standard and modified ISO methods in detecting NoV for oysters and mussels. Using the standard ISO method, the recovery rates of NoV in oysters (2.10 ± 0.80 %) and mussels (2.39 ± 0.56 %) were comparable (p > 0.05, unpaired t-test). In contrast, the virus recovery rates in oysters (19.83 ± 3.64 %) and mussels (46.96 ± 3.55 %) were both significantly improved by the modified method. Also, a significant difference was found between the virus recovery rates in two shellfish (p < 0.05, unpaired t-test), resulting in a 2.09-fold difference in their virus concentrations. Additionally, the limits of detection at 95 % probability of the modified ISO method for oysters and mussels could both reach 3.33 × 103 copies/g of digestive glands. Finally, the modified ISO method has been successfully applied in commercial oysters (14/27, 51.85 %) and mussels (15/23, 65.22 %), and the results indicated a significant difference in NoV recovery rates between two shellfish (p < 0.05, one-way analysis of variance). In summary, the modified ISO method showed higher virus recovery rates than the standard ISO method, which would be used as an essential tool for NoV detection in oysters and mussels.


Assuntos
Bivalves , Norovirus , Ostreidae , Animais , Frutos do Mar
3.
J Med Virol ; 95(1): e28216, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36254681

RESUMO

Norovirus is the primary foodborne pathogenic agent causing viral acute gastroenteritis. It possesses broad genetic diversity and the prevalence of different genotypes varies substantially. However, the differences in RNA-dependent RNA polymerase (RdRp) activity among different genotypes of noroviruses remain unclear. In this study, the molecular mechanism of RdRp activity difference between the epidemic strain GII.17[P17] and the non-epidemic strain GII.8[P8] was characterized. By evaluating the evolutionary history of RdRp sequences with Markov Chain Monte Carlo method, the evolution rate of GII.17[P17] variants was higher than that of GII.8[P8] variants (1.22 × 10-3 nucleotide substitutions/site/year to 9.31 × 10-4 nucleotide substitutions/site/year, respectively). The enzyme catalytic reaction demonstrated that the Vmax value of GII.17[P17] RdRp was 2.5 times than that of GII.8[P8] RdRp. And the Km of GII.17[P17] and GII.8[P8] RdRp were 0.01 and 0.15 mmol/L, respectively. Then, GII.8[P8] RdRp fragment mutants (A-F) were designed, among which GII.8[P8]-A/B containing the conserved motif G/F were found to have significant effects on improving RdRp activity. The Km values of GII.8[P8]-A/B reached 0.07 and 0.06 mmol/L, respectively. And their Vmax values were 1.34 times than that of GII.8[P8] RdRp. In summary, our results suggested that RdRp activities were correlated with their epidemic characteristics. These findings will ultimately provide a better understanding in replication mechanism of noroviruses and development of antiviral drugs.


Assuntos
Infecções por Caliciviridae , Norovirus , Humanos , Norovirus/genética , Variação Genética , Infecções por Caliciviridae/epidemiologia , Genótipo , RNA Polimerase Dependente de RNA/genética , Nucleotídeos , Filogenia
4.
Food Microbiol ; 109: 104140, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36309442

RESUMO

Human noroviruses (HuNoVs) have been found as the leading cause of acute gastroenteritis outbreaks in all age groups and are significantly correlated with the consumption of shellfish. In this study, the contamination of HuNoVs in shellfish was estimated through a systematic review and meta-analysis. Studies on the contamination of HuNoVs in shellfish were searched from PubMed, Web of Science, Embase, and Cochrane Library from January 2000 to August 2021. A total of 75 studies were included, and the pooled HuNoVs prevalence in shellfish was 29% (95% CI: 23-35) worldwide. As revealed by the results of the subgroup meta-analysis, the prevalence of dominant genogroup was variable, and 4% (95% CI: 3-6), 13% (95% CI: 10-17), with 7% (95% CI: 4-11) of the samples, respectively, contaminated by GI alone, GII alone, and GI&GII. The HuNoVs prevalence of shellfish in Europe, America, and Asia was 33% (95% CI: 24-43), 24% (95% CI: 7-47), and 27% (95% CI: 18-35), respectively, while only 10% (95% CI: 5-17) in Africa. Furthermore, the prevalence of HuNoVs in shellfish was the highest in spring (35%, 95% CI: 23-49) and winter (35%, 95% CI: 22-50), and the lowest in summer (11%, 95% CI: 5-18). Oysters, clams, and mussels had comparable HuNoVs prevalence of 28% (95% CI: 20-37), 27% (95% CI: 16-39) and 24% (95% CI: 17-32), respectively. The prevalence of HuNoVs in shellfish from harvest areas and markets was 30% (95% CI: 23-38) and 30% (95% CI: 19-41), respectively. The results of this study suggest a substantial burden of HuNoVs in shellfish worldwide, with GII.4 (92.86%) and GII.2 (46.43%) as the predominant genotypes. This study provides information regarding the contamination of HuNoVs in shellfish worldwide, which will contribute to the development of appropriate control measures to prevent shellfish-related HuNoVs gastroenteritis.


Assuntos
Bivalves , Infecções por Caliciviridae , Gastroenterite , Norovirus , Ostreidae , Animais , Humanos , Norovirus/genética , Frutos do Mar , Gastroenterite/epidemiologia , Genótipo , Infecções por Caliciviridae/epidemiologia
5.
Virus Res ; 306: 198603, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34662679

RESUMO

Noroviruses are causative agents of acute nonbacterial gastroenteritis epidemics worldwide. There are various genotypes, among which the non-epidemic genotype GII.8 can cause norovirus outbreaks. We previously demonstrated that the immunogenicity of GII.8 differed from that of epidemic variants. This study aimed to comprehensively compare the receptor profile and immunogenicity of the GII.8 variant with those of the epidemic variants. Using the baculovirus-insect cell expression system, we observed that recombinant capsid protein VP1 of the norovirus GII.8 GZ2017-L601 strain formed virus-like particles (VLPs) with a diameter of approximately 30 nm, as evidenced by transmission electron microscopy analysis. The GII.8 VLPs showed weak or moderate binding with all secretor histo-blood group antigens (HBGAs), but not with non-secretors, as evidenced by the HBGA-VLP binding test. The GII.8 VLP antiserum obtained from immunized BALB/c mice was tested for cross-reactivity with other norovirus genotypes (n = 28). The results showed that this antiserum demonstrated moderate cross-reactivity with GI.1, GII.3, and GII.15; however, no cross-reactivity with the epidemic variants of GII.2, GII.4, and GII.17 was observed. Additionally, the blocking-antibody activity of GII.8 antisera against GII.4 VLP-HBGAs and GII.17 VLP-HBGAs interactions and the cross-blocking of GII.8 VLP-HBGAs interactions by GI.1 and GII.4 antisera were evaluated using the HBGAs-VLP blocking test. However, no cross-blocking effect was observed. In summary, the characterization of norovirus GII.8 VLPs and derived antisera revealed that the GII.8 immunogenicity differed from that of epidemic variants.


Assuntos
Antígenos de Grupos Sanguíneos , Infecções por Caliciviridae , Epidemias , Gastroenterite , Norovirus , Animais , Antígenos de Grupos Sanguíneos/metabolismo , Infecções por Caliciviridae/epidemiologia , Genótipo , Soros Imunes/metabolismo , Camundongos , Proteínas Recombinantes/genética
6.
Pathogens ; 10(8)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34451450

RESUMO

Human norovirus (HuNoV), which is the major causative agent of acute gastroenteritis, has broad antigenic diversity; thus, the development of a broad-spectrum vaccine is challenging. To establish the relationship between viral genetic diversity and antigenic diversity, capsid P proteins and antisera of seven GI and 16 GII HuNoV genotypes were analyzed. Enzyme-linked immunosorbent assays showed that HuNoV antisera strongly reacted with the homologous capsid P proteins (with titers > 5 × 104). However, 17 (73.9%) antisera had weak or no cross-reactivity with heterologous genotypes. Interestingly, the GII.5 antiserum cross-reacted with seven (30.4%) capsid P proteins (including pandemic genotypes GII.4 and GII.17), indicating its potential use for HuNoV vaccine development. Moreover, GI.2 and GI.6 antigens reacted widely with heterologous antisera (n ≥ 5). Sequence alignment and phylogenetic analyses of the P proteins revealed conserved regions, which may be responsible for the immune crossover reactivity observed. These findings may be helpful in identifying broad-spectrum epitopes with clinical value for the development of a future vaccine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA