Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38920067

RESUMO

OBJECTIVES: Acute pancreatitis(AP) is a common digestive tract disease, often accompanied by severe metabolic disorders, but there are no specific markers and treatment methods, and the potential metabolic pathways behind it remain to be explored. METHODS: Establish mild acute pancreatitis and severe acute pancreatitis models in rats and intervene with antioxidant NAC. Analyze serum oxidative stress indicators and pathological changes in pancreatic tissue. In addition, non-targeted metabolomics analysis of serum differential metabolites between groups was conducted based on the LC/MS system. RESULTS: The pathological score of the model group rats increased, and the levels of oxidative stress factors ROS and MDA significantly increased, while the activity of the antioxidant enzyme SOD decreased. After NAC intervention, oxidative stress damage in rats was alleviated. Non-targeted metabolomics experiments suggest significant differences in serum metabolic profiles among different groups of rats. CONCLUSION: Metabolomics results show that the obtained differential metabolites are expected to become serum biomarkers for AP.

2.
Sci Rep ; 14(1): 9548, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664508

RESUMO

Ferroptosis is closely associated with inflammatory diseases, including acute pancreatitis (AP); however, the involvement of ferroptosis in hypertriglyceridemic pancreatitis (HTGP) remains unclear. In the present study, we aimed to explore the relationship between lipid metabolism and ferroptosis in HTGP and the alleviating effect of liproxstatin-1 (Lip-1) in vivo. This study represents the first exploration of lipid metabolism and endoplasmic reticulum stress (ERS) in HTGP, targeting ferroptosis as a key factor in HTGP. Hypertriglyceridemia (HTG) was induced under high-fat diet conditions. Cerulein was then injected to establish AP and HTGP models. Lip-1, a specific ferroptosis inhibitor, was administered before the induction of AP and HTGP in rats, respectively. Serum triglyceride, amylase, inflammatory factors, pathological and ultrastructural structures, lipid peroxidation, and iron overload indicators related to ferroptosis were tested. Moreover, the interaction between ferroptosis and ERS was assessed. We found HTG can exacerbate the development of AP, with an increased inflammatory response and intensified ferroptosis process. Lip-1 treatment can attenuate pancreatic injury by inhibiting ferroptosis through lipid metabolism and further resisting activations of ERS-related proteins. Totally, our results proved lipid metabolism can promote ferroptosis in HTGP by regulating ACSL4/LPCAT3 protein levels. Additionally, ERS may participate in ferroptosis via the Bip/p-EIF2α/CHOP pathway, followed by the alleviating effect of Lip-1 in the rat model.


Assuntos
Estresse do Retículo Endoplasmático , Ferroptose , Hipertrigliceridemia , Metabolismo dos Lipídeos , Pancreatite , Quinoxalinas , Compostos de Espiro , Animais , Ferroptose/efeitos dos fármacos , Pancreatite/tratamento farmacológico , Pancreatite/metabolismo , Pancreatite/patologia , Hipertrigliceridemia/tratamento farmacológico , Hipertrigliceridemia/metabolismo , Ratos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Masculino , Metabolismo dos Lipídeos/efeitos dos fármacos , Cicloexilaminas/farmacologia , Modelos Animais de Doenças , Ratos Sprague-Dawley , Peroxidação de Lipídeos/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Pâncreas/metabolismo , Triglicerídeos/sangue , Triglicerídeos/metabolismo
3.
Exp Ther Med ; 27(4): 147, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38476889

RESUMO

The mitochondrial calcium uniporter (MCU) is a major protein for the uptake of mitochondrial calcium to regulate intracellular energy metabolism, including processes such as mitophagy. The present study investigated the effect of the MCU on mitophagy in pancreatic ductal epithelial cells (PDECs) in acute pancreatitis (AP) in vitro. The normal human PDECs (HPDE6-C7) were treated with caerulein (CAE) to induce AP-like changes, with or without ruthenium red to inhibit the MCU. The mitochondrial membrane potentials (MMPs) and mitochondrial Ca2+ levels were analyzed by fluorescence. The expression levels of MCU, LC3, p62, and translocase of the outer mitochondrial membrane complex subunit 20 (TOMM20), putative kinase 1 (PINK1), and Parkin were measured by western blotting and immunofluorescence. Mitophagy was observed by confocal fluorescence microscopy and transmission electron microscopy. The results showed that CAE increased the MCU protein expression, mitochondrial Ca2+ levels, MMP depolarization and the protein expression of mitophagy markers including the LC3II/I ratio, PINK1, and Parkin. CAE decreased the protein expression of p62 and TOMM20, and promoted the formation of mitophagosomes in HPDE6-C7 cells. Notably, changes in these markers were reversed by inhibiting the MCU. In conclusion, an activated MCU may promote mitophagy by regulating the PINK1/Parkin pathway in PDECs in AP.

4.
Open Life Sci ; 19(1): 20220806, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38283117

RESUMO

This study aimed to clarify the role of la-related protein 1 (LARP1) in cell cycle progression and metastatic behavior of cultured gastric carcinoma (GC) cells. To do that, LARP1 expression was detected in clinical GC tissues and cell lines using quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. The cell viability, apoptosis, cell cycle, migration, invasion, and cell growth were examined using a Cell Counting Kit-8, Annexin V-FITC staining, propidium iodide staining, Transwell migration and invasion assays, and colony formation assays after LARP1 knockdown. Phosphatidyl inositol 3-kinase (PI3K) and AKT1 mRNA and protein expression levels of PI3K, p-AKT1, AKT1, p-BAD, p-mTOR, and p21 in si-LARP1 transfected GC cells were determined using qRT-PCR and western blotting. Here, we've shown that LARP1 expression was upregulated in human GC tissues and KATO III cells. LARP1 knockdown inhibited GC cell proliferation, cell cycle progression, migration, invasion, and colony formation and promoted apoptosis. In si-LARP1-transfected KATO III cells, the mRNA expression levels of PI3K and AKT1, PI3K protein expression, and the p-AKT1/AKT1 ratio were significantly suppressed. p-mTOR and p-BAD were significantly decreased, whereas p21 was significantly increased in si-LARP1-transfected KATO III cells. In conclusion LARP1 knockdown induces apoptosis and inhibits cell cycle progression and metastatic behavior via PI3K/AKT1 signaling in GC cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA