Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 801
Filtrar
1.
Biochem Pharmacol ; : 116344, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38852647

RESUMO

Antimicrobial peptides (AMPs) are an important component of innate immunity in both vertebrates and invertebrates, and some of the unique characteristics of AMPs are usually associated with their living environment. The marine fish, mudskipper Boleophthalmus pectinirostris, usually live amphibiously in intertidal environments that are quite different from other fish species, which would be an exceptional source of new AMPs. In the study, an AMP named Bolespleenin334-347 was identified, which was a truncated peptide derived from a new functional gene found in B. pectinirostris, that was up-regulated in response to bacterial challenge. Bolespleenin334-347 had only 14 amino acid residues, including five consecutive arginine residues. It was found that the peptide had broad-spectrum antibacterial activity, good thermal stability and sodium ion tolerance. Bolespleenin334-347 killed Acinetobacter baumannii and Staphylococcus aureus by disrupting the structural integrity of the bacterial membrane, leading to leakage of the cellular contents, and inducing accumulation of bacterial endogenous reactive oxygen species (ROS). In addition, Bolespleenin334-347 effectively inhibited biofilm formation of A. baumannii and S. aureus and long-term treatment did not lead to the development of resistance. Importantly, Bolespleenin334-347 maintained stable activity against clinically multi-drug resistant bacterial strains. In addition, it was noteworthy that Bolespleenin334-347 showed superior efficacy to LL-37 and vancomycin in a constructed mouse model of MRSA-induced superficial skin infections, as evidenced by a significant reduction in bacterial load and more favorable wound healing. This study provides an effective antimicrobial agent for topical skin infections with potential therapeutic efficacy for infections with drug-resistant bacteria, including MRSA.

2.
J Agric Food Chem ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833376

RESUMO

This study found that, after microwave treatment at 560 W for 30 s, alkaline protease enzymolysis significantly reduced the allergenicity of ovalbumin (OVA). Furthermore, specific adsorption of allergenic anti-enzyme hydrolyzed peptides in the enzymatic products by immunoglobulin G (IgG) bound to magnetic bead further decreased the allergenicity of OVA. The results indicated that microwave treatment disrupts the structure of OVA, increasing the accessibility of OVA to the alkaline protease. A comparison between 17 IgG-binding epitopes identified through high-performance liquid chromatography-higher energy collisional dissociation-tandem mass spectrometry and previously reported immunoglobulin E (IgE)-binding epitopes revealed a complete overlap in binding epitopes at amino acids (AA)125-135, AA151-158, AA357-366, and AA373-381. Additionally, partial overlap was observed at positions AA41-59, AA243-252, and AA320-340. Consequently, these binding epitopes were likely pivotal in eliciting the allergic reaction to OVA, warranting specific attention in future studies. In conclusion, microwave-assisted enzymolysis synergized with magnetic bead adsorption provides an effective method to reduce the allergenicity of OVA.

3.
Sci Rep ; 14(1): 12987, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844509

RESUMO

The dust pollution caused by the operation of fully mechanized heading face poses a serious threat to the safety production of operators and working face. To reduce dust concentration at the fully mechanized heading face, this study analyzed dust samples collected from various positions to understand the particle size distribution characteristics. Based on these findings, a conical diversion air conditioning (CDAC) device was designed to create a radial air curtain for dust control in the roadway cross-section. Computational Fluid Dynamics (CFD) was then employed to investigate the airflow and particle dynamics when the cone-shaped deflector was in closed and open states. The results show that in the fully mechanized heading face, the dust distribution in the working area of the roadheader driver is relatively dense, and the dust particles with particle size ≤ 8 µm account for a large proportion. When the CDAC device is deployed, the axial airflow in the roadway is changed into a rotating airflow along the roadway wall, and an air screen is established in the working area of the roadheader driver to block the outward diffusion of dust. When the pressure air outlet is arranged 30 m away from the tunneling head, the pressure air volume is set to 400 m3/min, and the CDAC device can better form the air curtain barrier to block the dust particles. It provides a new method for effectively controlling the dust concentration of the fully mechanized heading face and directly ensuring the health of the roadheader driver.

4.
Phytomedicine ; 131: 155771, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38851101

RESUMO

BACKGROUND: Sepsis often leads to significant morbidity and mortality due to severe myocardial injury. As is known, the activation of NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome crucially contributes to septic cardiomyopathy (SCM) by facilitating the secretion of interleukin (IL)-1ß and IL-18. The removal of palmitoyl groups from NLRP3 is a crucial step in the activation of the NLRP3 inflammasome. Thus, the potential inhibitors that regulate the palmitoylation and inactivation of NLRP3 may significantly diminish sepsis-induced cardiac dysfunction. PURPOSE: The present study sought to explore the effects of the prospective flavonoid compounds targeting NLRP3 on SCM and to elucidate the associated underlying mechanisms. STUDY DESIGN: The palmitoylation and activation of NLRP3 were detected in H9c2 cells and C57BL/6 J mice. METHODS/RESULTS: Echocardiography, histological staining, western blotting, co-immunoprecipitation, qPCR, ELISA and network pharmacology were used to assess the impact of vaccarin (VAC) on SCM in mice subjected to lipopolysaccharide (LPS) injection. From the collection of 74 compounds, we identified that VAC had the strongest capability to suppress NLRP3 luciferase report gene activity in cardiomyocytes, and the anti-inflammatory characteristics of VAC were further ascertained by the network pharmacology. Exposure of LPS triggered apoptosis, inflammation, oxidative stress, mitochondrial disorder in cardiomyocytes. The detrimental alterations were significantly reversed upon VAC treatment in both septic mice and H9c2 cells exposed to LPS. In vivo experiments demonstrated that VAC treatment alleviated septic myocardial injury, indicated by enhanced cardiac function parameters, preserved cardiac structure, and reduced inflammation/oxidative response. Mechanistically, VAC induced NLRP3 palmitoylation to inactivate NLRP3 inflammasome by acting on zDHHC12. In support, the NLRP3 agonist ATP and the acylation inhibitor 2-bromopalmitate (2-BP) prevented the effects of VAC. CONCLUSION: Our findings suggest that VAC holds promise in protecting against SCM by mitigating cardiac oxidative stress and inflammation via priming NLRP3 palmitoylation and inactivation. These results lay the solid basis for further assessment of the therapeutic potential of VAC against SCM.

5.
J Med Chem ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885173

RESUMO

Triple-negative breast cancer (TNBC) represents a highly aggressive and heterogeneous malignancy. Currently, effective therapies for TNBC are very limited and remain a significant unmet clinical need. Targeting the transcription-regulating cyclin-dependent kinase 9 (CDK9) has emerged as a promising avenue for therapeutic treatment of TNBC. Herein, we report the design, synthesis, optimization, and evaluation of a new series of aminopyrazolotriazine compounds as orally bioavailable, potent, and CDK9/2 selectivity-improved inhibitors, enabling efficacious inhibition of TNBC cell growth, as well as notable antitumor effect in TNBC models. The compound C35 demonstrated low-nanomolar potency with substantially improved CDK9/2 selectivity, downregulated the CDK9-downstream targets (e.g., MCL-1), and induced apoptosis in TNBC cell lines. Moreover, with the desired oral bioavailability, oral administration of C35 could significantly suppress the tumor progression in two TNBC mouse models. This study demonstrates that target transcriptional regulation is an effective strategy and holds promising potential as a targeted therapy for the treatment of TNBC.

6.
J Hazard Mater ; 475: 134870, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38876019

RESUMO

Exposure to ozone (O3) has been associated with cardiovascular outcomes in humans, yet the underlying mechanisms of the adverse effect remain poorly understood. We aimed to investigate the association between O3 exposure and glycerophospholipid metabolism in healthy young adults. We quantified plasma concentrations of phosphatidylcholines (PCs) and lysophosphatidylcholines (lysoPCs) using a UPLC-MS/MS system. Time-weighted personal exposures were calculated to O3 and co-pollutants over 4 time windows, and we employed orthogonal partial least squares discriminant analysis to discern differences in lipids profiles between high and low O3 exposure. Linear mixed-effects models and mediation analysis were utilized to estimate the associations between O3 exposure, lipids, and cardiovascular physiology indicators. Forty-three healthy adults were included in this study, and the mean (SD) time-weighted personal exposures to O3 was 9.08 (4.06) ppb. With shorter exposure durations, O3 increases were associated with increasing PC and lysoPC levels; whereas at longer exposure times, the opposite relationship was shown. Furthermore, two specific lipids, namely lysoPC a C26:0 and lysoPC a C17:0, showed significantly positive mediating effects on associations of long-term O3 exposure with pulse wave velocity and systolic blood pressure, respectively. Alterations in specific lipids may underlie the cardiovascular effects of O3 exposure.

7.
Arch Biochem Biophys ; 758: 110050, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38876247

RESUMO

Mutation of phenylalanine at position 508 in the cystic fibrosis transmembrane conductance regulator (F508del CFTR) yields a protein unstable at physiological temperatures that is rapidly degraded in the cell. This mutation is present in about 90% of cystic fibrosis patients, hence there is great interest in compounds reversing its instability. We have previously reported the expression of the mutated protein at low temperature and its purification in detergent. Here we describe the use of the protein to screen compounds present in a library of Federal Drug Administration (FDA) - approved drugs and also in a small natural product library. The kinetics of unfolding of F508del CFTR at 37 °C were probed by the increase in solvent-exposed cysteine residues accessible to a fluorescent reporter molecule. This occurred in a bi-exponential manner with a major (≈60%) component of half-life around 5 min and a minor component of around 60 min. The faster kinetics match those observed for loss of channel activity of F508del CFTR in cells at 37 °C. Most compounds tested had no effect on the fluorescence increase, but some were identified that significantly slowed the kinetics. The general properties of these compounds, and any likely mechanisms for inducing stability in purified CFTR are discussed. These experimental data may be useful for artificial intelligence - aided design of CFTR-specific drugs and in the identification of stabilizing additives for membrane proteins (in general).

8.
Ecotoxicol Environ Saf ; 278: 116425, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38723385

RESUMO

The biogenic synthesis of silver nanoparticles (AgNPs) by microorganisms has been a subject of increasing attention. Despite extensive studies on this biosynthetic pathway, the mechanisms underlying the involvement of proteins and enzymes in AgNPs production have not been fully explored. Herein, we reported that Burkholderia contaminans ZCC was able to reduce Ag+ to AgNPs with a diameter of (10±5) nm inside the cell. Exposure of B. contaminans ZCC to Ag+ ions led to significant changes in the functional groups of cellular proteins, with approximately 5.72% of the (C-OH) bonds being converted to (C-C/C-H) (3.61%) and CO (2.11%) bonds, and 4.52% of the CO (carbonyl) bonds being converted to (C-OH) bonds. Furthermore, the presence of Ag+ and AgNPs induced the ability of extracellular electron transfer for ZCC cells via specific membrane proteins, but this did not occur in the absence of Ag+ ions. Proteomic analysis of the proteins and enzymes involved in heavy metal efflux systems, protein secretion system, oxidative phosphorylation, intracellular electron transfer chain, and glutathione metabolism suggests that glutathione S-transferase and ubiquinol-cytochrome c reductase iron-sulfur subunit play importance roles in the biosynthesis of AgNPs. These findings contribute to a deeper understanding of the functions exerted by glutathione S-transferase and ferredoxin-thioredoxin reductase iron-sulfur subunits in the biogenesis of AgNPs, thereby hold immense potential for optimizing biotechnological techniques aimed at enhancing the yield and purity of biosynthetic AgNPs.


Assuntos
Burkholderia , Nanopartículas Metálicas , Proteoma , Prata , Prata/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Proteoma/metabolismo , Burkholderia/metabolismo , Proteômica , Proteínas de Bactérias/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-38747402

RESUMO

BACKGROUND: Advanced age is associated with an increased risk of adverse cardiovascular events. The relationship between biological age acceleration (BAA), cardiac size, cardiac function, and heart failure (HF) is not well-defined. METHODS: Utilizing the UK Biobank cohort, we assessed biological age using the Klemera-Doubal and PhenoAge method. BAA was quantified by residual analysis compared to chronological age. Cardiovascular magnetic resonance (CMR) imaging provided detailed insights into cardiac structure and function. We employed multivariate regression to examine links between BAA and CMR-derived cardiac phenotypes. Cox proportional hazard regression models analyses was applied to explore the causative relationship between BAA and HF. Additionally, Mendelian randomization was used to investigate the genetic underpinnings of these associations. RESULTS: A significant correlation was found between increased BAA and deleterious changes in cardiac structure, such as diminished left ventricular mass, lower overall ventricular volume, and reduced stroke volumes across ventricles and atria. Throughout a median follow-up of 13.8 years, participants with greater biological aging showed a heightened risk of HF (26% per standard deviation [SD] increase in KDM-BA acceleration, 95% confidence intervals [CI]: 23%-28%; 33% per SD increase in PhenoAge acceleration, 95% CI: 32%-35%). Mendelian randomization analysis suggests a likely causal link between BAA, vital cardiac metrics, and HF risk. CONCLUSIONS: In this cohort, accelerated biological aging may serve as a risk indicator for altered cardiac dimensions, functionality, and the onset of heart failure among middle-aged and elderly adults. It holds promise as a focal point for evaluating risk and developing targeted interventions.

10.
J Am Chem Soc ; 146(21): 14889-14897, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38747066

RESUMO

Ni-rich cathodes are some of the most promising candidates for advanced lithium-ion batteries, but their available capacities have been stagnant due to the intrinsic Li+ storage sites. Extending the voltage window down can induce the phase transition from O3 to 1T of LiNiO2-derived cathodes to accommodate excess Li+ and dramatically increase the capacity. By setting the discharge cutoff voltage of LiNi0.6Co0.2Mn0.2O2 to 1.4 V, we can reach an extremely high capacity of 393 mAh g-1 and an energy density of 1070 Wh kg-1 here. However, the phase transition causes fast capacity decay and related structural evolution is rarely understood, hindering the utilization of this feature. We find that the overlithiated phase transition is self-limiting, which will transform into solid-solution reaction with cycling and make the cathode degradation slow down. This is attributed to the migration of abundant transition metal ions into lithium layers induced by the overlithiation, allowing the intercalation of overstoichiometric Li+ into the crystal without the O3 framework change. Based on this, the wide-potential cycling stability is further improved via a facile charge-discharge protocol. This work provides deep insight into the overstoichiometric Li+ storage behaviors in conventional layered cathodes and opens a new avenue toward high-energy batteries.

11.
Foods ; 13(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731658

RESUMO

Parkinson's disease (PD), the second most common neurodegenerative disorder, is linked to α-synuclein (α-Syn) aggregation. Despite no specific drug being available for its treatment, curcumin, from the spice turmeric, shows promise. However, its application in PD is limited by a lack of understanding of its anti-amyloidogenic mechanisms. In this study, we first reconstructed the liquid-liquid phase separation (LLPS) of α-Syn in vitro under different conditions, which may be an initial step in entraining the pathogenic aggregation. Subsequently, we evaluated the effects of curcumin on the formation of droplets, oligomers, and aggregated fibers during the LLPS of α-synuclein, as well as its impact on the toxicity of aggregated α-synuclein to cultured cells. Importantly, we found that curcumin can inhibit amyloid formation by inhibiting the occurrence of LLPS and the subsequent formation of oligomers of α-Syn in the early stages of aggregation. Finally, the molecular dynamic simulations of interactions between α-Syn decamer fibrils and curcumin showed that van der Waal's interactions make the largest contribution to the anti-aggregation effect of curcumin. These results may help to clarify the mechanism by which curcumin inhibits the formation of α-Syn aggregates during the development of PD.

12.
Chemistry ; : e202400998, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780029

RESUMO

Rapid construction of new fluorescence emitters is essential in advancing synthetic luminescent materials. This study illustrated a piperidine-promoted reaction of chiral dialdehyde with benzoylacetonitrile and malonitrile, leading to the formation of the 6/6/7 fused cyclic product in good yield. The proposed reaction mechanism involves a dual condensation/cyclization process, achieving the formation of up to six bonds for fused polycycles. The single crystal structure analysis revealed that the fused cyclic skeleton contains face-to-face naphthyl and cyanoalkenyl motifs, which act as the electronic donor and acceptor, respectively, potentially resulting in through-space charge transfer (TSCT) emission. While the TSCT emissions were weak in solution, a notable increase in luminescence intensity was observed upon aggregation, indicating bright fluorescent light. A series of theoretical analyses further supported the possibility of spatial electronic communication based on frontier molecular orbitals, the distance of charge transfer, and reduced density gradient analysis. This work not only provides guidance for the one-step synthesis of complex polycycles, but also offers valuable insights into the design of aggregation-enhanced TSCT emission materials.

13.
Clin Transl Med ; 14(5): e1660, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38764260

RESUMO

BACKGROUND: Human dermal fibroblasts (HDFs) are essential in the processes of skin ageing and wound healing. However, the underlying mechanism of HDFs in skin healing of the elderly has not been well defined. This study aims to elucidate the mechanisms of HDFs senescence and how senescent HDFs affect wound healing in aged skin. METHODS: The expression and function of sperm equatorial segment protein 1 (SPESP1) in skin ageing were evaluated via in vivo and in vitro experiments. To delve into the potential molecular mechanisms by which SPESP1 influences skin ageing, a combination of techniques was employed, including proteomics, RNA sequencing, immunoprecipitation, chromatin immunoprecipitation and liquid chromatography-mass spectrometry analyses. Clearance of senescent cells by dasatinib plus quercetin (D+Q) was investigated to explore the role of SPESP1-induced senescent HDFs in wound healing. RESULTS: Here, we define the critical role of SPESP1 in ameliorating HDFs senescence and retarding the skin ageing process. Mechanistic studies demonstrate that SPESP1 directly binds to methyl-binding protein, leading to Decorin demethylation and subsequently upregulation of its expression. Moreover, SPESP1 knockdown delays wound healing in young mice and SPESP1 overexpression induces wound healing in old mice. Notably, pharmacogenetic clearance of senescent cells by D+Q improved wound healing in SPESP1 knockdown skin. CONCLUSIONS: Taken together, these findings reveal the critical role of SPESP1 in skin ageing and wound healing, expecting to facilitate the development of anti-ageing strategies and improve wound healing in the elderly.


Assuntos
Proteínas de Transporte , Senescência Celular , Fibroblastos , Proteínas de Plasma Seminal , Cicatrização , Animais , Humanos , Masculino , Camundongos , Senescência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Quercetina/farmacologia , Envelhecimento da Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Plasma Seminal/genética , Proteínas de Plasma Seminal/metabolismo
14.
Int J Biol Macromol ; 271(Pt 1): 132615, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38795900

RESUMO

A series of intricate and dynamic physiological healing processes are involved in the healing of skin wounds. Herein, a multifunctional hydrogel is firstly designed and constructed by L-arginine-grafted O-carboxymethyl chitosan (CMCA), catechol-modified oxidized hyaluronic acid (DOHA), and dopamine nanoparticles (pDA-NPs). pDA-NPs were loaded in hydrogel for inherently powerful antimicrobial properties and could be as a cross-linking agent to construct hydrogels. Raffinose (Raf) was further incorporated to obtain CMCA-DOHA-pDA2@Raf hydrogel for its function of modulating epidermal differentiation. The hydrogel has good physicochemical properties and could promote cell proliferation and migration, which shows superior hemostatic capabilities in animal models of hemorrhage. The hydrogel significantly promoted wound healing on rat skin defect models by upregulating VEGF and CD31 and decreasing IL-6 and TNF-α, stimulating neovascularization and collagen deposition in epithelial structures. This multifunctional hydrogel implies the potential to be a dynamic wound dressing.


Assuntos
Quitosana , Dopamina , Hidrogéis , Nanopartículas , Rafinose , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Nanopartículas/química , Dopamina/química , Dopamina/farmacologia , Ratos , Quitosana/química , Quitosana/análogos & derivados , Quitosana/farmacologia , Rafinose/química , Rafinose/farmacologia , Proliferação de Células/efeitos dos fármacos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Humanos , Masculino , Reagentes de Ligações Cruzadas/química , Ratos Sprague-Dawley , Pele/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos
15.
Talanta ; 275: 126103, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38663069

RESUMO

Aptamers are short, single-stranded nucleic acids with high affinity and specificity for various targets, making them valuable in diagnostics and therapeutics. Their isolation traditionally involves a time-consuming and costly process called SELEX. While SELEX methods have evolved to improve binding and amplification, the crucial step of aptamer identification from sequencing data remains expensive and often overlooked. Common identification methods require modification of aptamer candidates with labels like biotin or fluorescent dyes, which becomes costly and cumbersome for high-throughput sequencing data. This paper presents an efficient and cost-effective approach to streamline aptamer identification. It employs asymmetric polymerase chain reaction (PCR) to generate modified single-stranded DNA copies of aptamer candidates, simplifying the modification process. By using excess modified forward primers and limited reverse primers, this method reduces costs since only unmodified candidates need to be synthesized initially. The approach was demonstrated with an IgE protein aptamer and successfully applied to identify aptamers from a pool of 12 candidates against a monoclonal antibody. The validity of the results was further confirmed through the direct synthesis of fluorophore-conjugated aptamer candidates, yielding consistent outcomes while reducing the cost by threefold. This approach addresses a critical bottleneck in aptamer discovery by significantly reducing the time and cost associated with aptamer identification, facilitating aptamer-based research and making aptamers more accessible for various applications in diagnostics and therapeutics.


Assuntos
Aptâmeros de Nucleotídeos , Análise Custo-Benefício , Técnica de Seleção de Aptâmeros , Técnica de Seleção de Aptâmeros/métodos , Aptâmeros de Nucleotídeos/química , Imunoglobulina E , Reação em Cadeia da Polimerase/métodos , DNA de Cadeia Simples/química , Anticorpos Monoclonais/química
16.
Genes (Basel) ; 15(4)2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38674363

RESUMO

The Homeodomain leucine zipper (HD-Zip) family of transcription factors is crucial in helping plants adapt to environmental changes and promoting their growth and development. Despite research on the HD-Zip family in various plants, studies in Lagerstroemia (crape myrtle) have not been reported. This study aimed to address this gap by comprehensively analyzing the HD-Zip gene family in crape myrtle. This study identified 52 HD-Zip genes in the genome of Lagerstroemia indica, designated as LinHDZ1-LinHDZ52. These genes were distributed across 22 chromosomes and grouped into 4 clusters (HD-Zip I-IV) based on their phylogenetic relationships. Most gene structures and motifs within each cluster were conserved. Analysis of protein properties, gene structure, conserved motifs, and cis-acting regulatory elements revealed diverse roles of LinHDZs in various biological contexts. Examining the expression patterns of these 52 genes in 6 tissues (shoot apical meristem, tender shoot, and mature shoot) of non-dwarf and dwarf crape myrtles revealed that 2 LinHDZs (LinHDZ24 and LinHDZ14) and 2 LinHDZs (LinHDZ9 and LinHDZ35) were respectively upregulated in tender shoot of non-dwarf crape myrtles and tender and mature shoots of dwarf crape myrtles, which suggested the important roles of these genes in regulate the shoot development of Lagerstroemia. In addition, the expression levels of 2 LinHDZs (LinHDZ23 and LinHDZ34) were significantly upregulated in the shoot apical meristem of non-dwarf crape myrtle. These genes were identified as key candidates for regulating Lagerstroemia plant height. This study enhanced the understanding of the functions of HD-Zip family members in the growth and development processes of woody plants and provided a theoretical basis for further studies on the molecular mechanisms underlying Lagerstroemia plant height.


Assuntos
Regulação da Expressão Gênica de Plantas , Lagerstroemia , Zíper de Leucina , Família Multigênica , Proteínas de Plantas , Genoma de Planta , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Lagerstroemia/genética , Lagerstroemia/metabolismo , Zíper de Leucina/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Clin Res Hepatol Gastroenterol ; 48(6): 102343, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641250

RESUMO

Various liver diseases pose great threats to humans. Although the etiologies of these liver diseases are quite diverse, they share similar pathologic phenotypes and molecular mechanisms such as oxidative stress, lipid and glucose metabolism disturbance, hepatic Kupffer cell (KC) proinflammatory polarization and inflammation, insulin resistance, and hepatic stellate cell (HSC) activation and proliferation. Peroxisome proliferator-activated receptor ß/δ (PPARß/δ) is expressed in various types of liver cells with relatively higher expression in KCs and HSCs. Accumulating evidence has revealed the versatile functions of PPARß/δ such as controlling lipid homeostasis, inhibiting inflammation, regulating glucose metabolism, and restoring insulin sensitivity, suggesting that PPARß/δ may serve as a potential molecular drug target for various liver diseases. This article aims to provide a concise review of the structure, expression pattern and biological functions of PPARß/δ in the liver and its roles in various liver diseases, and to discuss potential future research perspectives.


Assuntos
Hepatopatias , PPAR delta , PPAR beta , Humanos , PPAR beta/fisiologia , PPAR beta/metabolismo , PPAR delta/fisiologia , PPAR delta/metabolismo , Hepatopatias/metabolismo , Hepatopatias/tratamento farmacológico , Terapia de Alvo Molecular , Resistência à Insulina
18.
Life Sci ; 347: 122675, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38688383

RESUMO

AIMS: Rosacea is an inflammatory skin disease with immune and vascular dysfunction. Although there are multiple treatment strategies for rosacea, the clinical outcomes are unsatisfactory. MAIN METHODS: Combining transcriptome data and the Connectivity Map database quercetin was identified as a novel candidate for rosacea. Next, the therapeutic efficacy of quercetin was substantiated through proteomic analyses, in vivo experiments, and in vitro assays. Additionally, the utilization of DARTS, molecular docking and experimental verification revealed the therapeutic mechanisms of quercetin. KEY FINDINGS: Treatment with quercetin resulted in the following effects: (i) it effectively ameliorated rosacea-like features by reducing immune infiltration and angiogenesis; (ii) it suppressed the expression of inflammatory mediators in HaCaT cells and HDMECs; (iii) it interacted with p65 and ICAM-1 directly, and this interaction resulted in the repression of NF-κB signal and ICAM-1 expression in rosacea. SIGNIFICANCE: We show for the first time that quercetin interacted with p65 and ICAM-1 directly to alleviated inflammatory and vascular dysfunction, suggesting quercetin is a novel, promising therapeutic candidate for rosacea.


Assuntos
Inflamação , Molécula 1 de Adesão Intercelular , Quercetina , Rosácea , Fator de Transcrição RelA , Quercetina/farmacologia , Molécula 1 de Adesão Intercelular/metabolismo , Rosácea/tratamento farmacológico , Rosácea/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fator de Transcrição RelA/metabolismo , Animais , Simulação de Acoplamento Molecular , Camundongos , Feminino , Masculino
19.
Comput Struct Biotechnol J ; 23: 1348-1363, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38596313

RESUMO

Autoimmune diseases (ADs) are characterized by their complexity and a wide range of clinical differences. Despite patients presenting with similar symptoms and disease patterns, their reactions to treatments may vary. The current approach of personalized medicine, which relies on molecular data, is seen as an effective method to address the variability in these diseases. This review examined the pathologic classification of ADs, such as multiple sclerosis and lupus nephritis, over time. Acknowledging the limitations inherent in pathologic classification, the focus shifted to molecular classification to achieve a deeper insight into disease heterogeneity. The study outlined the established methods and findings from the molecular classification of ADs, categorizing systemic lupus erythematosus (SLE) into four subtypes, inflammatory bowel disease (IBD) into two, rheumatoid arthritis (RA) into three, and multiple sclerosis (MS) into a single subtype. It was observed that the high inflammation subtype of IBD, the RA inflammation subtype, and the MS "inflammation & EGF" subtype share similarities. These subtypes all display a consistent pattern of inflammation that is primarily driven by the activation of the JAK-STAT pathway, with the effective drugs being those that target this signaling pathway. Additionally, by identifying markers that are uniquely associated with the various subtypes within the same disease, the study was able to describe the differences between subtypes in detail. The findings are expected to contribute to the development of personalized treatment plans for patients and establish a strong basis for tailored approaches to treating autoimmune diseases.

20.
Cell Oncol (Dordr) ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607517

RESUMO

PURPOSE: GPX8, which is found in the endoplasmic reticulum lumen, is a member of the Glutathione Peroxidases (GPXs) family. Its role in hepatocellular carcinoma (HCC) is unknown. METHODS: Immunohistochemical staining was used to detect the protein levels of GPX8 in HCC tissue microarrays. A short hairpin RNA lentivirus was used to knock down GPX8, and the main signaling pathways were investigated using transcriptome sequencing and a phosphorylated kinase array. The sphere formation assays, cloning-formation assays and cell migration assays were used to evaluate the stemness and migration ability of HCC cells. Identifying the GPX8-interacting proteins was accomplished through immunoprecipitation and protein mass spectrometry. RESULTS: The GPX8 protein levels were downregulated in HCC patients. Low expression of GPX8 protein was related to early recurrence and poor prognosis in HCC patients. GPX8 knockdown could enhance the stemness and migration ability of HCC cells. Consistently, Based on transcriptome analysis, multiple signaling pathways that include the PI3K-AKT and signaling pathways that regulate the pluripotency of stem cells, were activated after GPX8 knockdown. The downregulation of GPX8 could increase the expression of the tumor stemness markers KLF4, OCT4, and CD133. The in vivo downregulation of GPX8 could also promote the subcutaneous tumor-forming and migration ability of HCC cells. MK-2206, which is a small-molecule inhibitor of AKT, could reverse the tumor-promoting effects both in vivo and in vitro. We discovered that GPX8 and the 71-kDa heat shock cognate protein (Hsc70) have a direct interaction. The phosphorylation of AKT encouraged the translocation of Hsc70 into the nucleus and the expression of the PI3K p110 subunit, thereby increasing the downregulation of GPX8. CONCLUSION: The findings from this study demonstrate the anticancer activity of GPX8 in HCC by inactivating the Hsc70/AKT pathway. The results suggest a possible therapeutic target for HCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA