Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Beilstein J Nanotechnol ; 15: 569-579, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887527

RESUMO

Hepatocellular carcinoma (HCC) is the sixth most common malignant tumor and the third leading cause of cancer death worldwide. Most patients are diagnosed at an advanced stage, and systemic chemotherapy is the preferred treatment modality for advanced HCC. Curcumin (CUR) is a polyphenolic antineoplastic drug with low toxicity obtained from plants. However, its low bioavailability and poor solubility limit its functionality. In this study, radiofrequency- (RF) enhanced responsive nanoflowers (NFs), containing superparamagnetic ferric oxide nanoclusters (Fe3O4 NCs), - CUR layer, - and MnO2 (CUR-Fe@MnO2 NFs), were verified to have a thermal therapeutic effect. Transmission electron microscopy was used to characterize the CUR-Fe@MnO2 NFs, which appeared flower-like with a size of 96.27 nm. The in vitro experimental data showed that RF enhanced the degradation of CUR-Fe@MnO2 NFs to release Mn2+ and CUR. The cytotoxicity test results indicated that after RF heating, the CUR-Fe@MnO2 NFs significantly suppressed HCC cell proliferation. Moreover, CUR-Fe@MnO2 NFs were effective T 1/T 2 contrast agents for molecular magnetic resonance imaging due to the release of Mn2+ and Fe3O4 NCs.

2.
J Magn Reson Imaging ; 59(3): 812-822, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37530736

RESUMO

BACKGROUND: Magnetic resonance imaging (MRI) reference ranges for ventricular morphology and function in the Chinese population are lacking. PURPOSE: To establish the MRI reference ranges of left and right ventricular (LV and RV) morphology and function based on a large multicenter cohort. STUDY TYPE: Prospective. POPULATION: One thousand and twelve healthy Chinese Han adults. FIELD STRENGTH/SEQUENCE: Balanced steady-state free procession cine sequence at 3.0 T. ASSESSMENT: Biventricular end-diastolic, end-systolic, stroke volume, and ejection fraction (EDV, ESV, SV, and EF), LV mass (LVM), end-diastolic and end-systolic dimension (LVEDD and LVESD), anteroseptal wall thickness (AS), and posterolateral wall thickness (PL) were measured. Body surface area (BSA) and height were used to index biventricular parameters. Parameters were compared between age groups and sex. STATISTICAL TESTS: Independent-samples t-tests or Mann-Whitney U test to compare mean values between sexes; ANOVA or Kruskal-Wallis test to compare mean values among age groups; linear regression to assess the relationships between cardiac parameters and age (correlation coefficient, r). A P value <0.05 was considered statistically significant. RESULTS: The biventricular volumes, LVM, LVEDD, RVEDV/LVEDV ratio, LVESD, AS, and PL were significantly greater in males than in females, even after indexing to BSA or height, while LVEF and RVEF were significantly lower in males than in females. For both sexes, age was significantly negatively correlated with biventricular volumes (male and female: LVEDV [r = -0.491; r = -0.373], LVESV [r = -0.194; r = -0.184], RVEDV [r = -0.639; r = -0.506], RVESV [r = -0.270; r = -0.223]), with similar correlations after BSA normalization. LVEF (r = 0.043) and RVEF (r = 0.033) showed a significant correlation with age in females, but not in males (P = 0.889; P = 0.282). DATA CONCLUSION: MRI reference ranges for biventricular morphology and function in Chinese adults are presented and show significant associations with age and sex. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.


Assuntos
Ventrículos do Coração , Imageamento por Ressonância Magnética , Adulto , Humanos , Masculino , Feminino , Volume Sistólico , Valores de Referência , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , China , Função Ventricular Esquerda , Função Ventricular Direita
3.
J Cardiovasc Magn Reson ; 25(1): 64, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37968645

RESUMO

BACKGROUND: Although reference ranges of T1 and T2 mapping are well established for cardiovascular magnetic resonance (CMR) at 1.5T, data for 3T are still lacking. The objective of this study is to establish reference ranges of myocardial T1 and T2 based on a large multicenter cohort of healthy Chinese adults at 3T CMR. METHODS: A total of 1015 healthy Chinese adults (515 men, age range: 19-87 years) from 11 medical centers who underwent CMR using 3T Siemens scanners were prospectively enrolled. T1 mapping was performed with a motion-corrected modified Look-Locker inversion recovery sequence using a 5(3)3 scheme. T2 mapping images were acquired using T2-prepared fast low-angle shot sequence. T1 and T2 relaxation times were quantified for each slice and each myocardial segment. The T1 mapping and extracellular volume standardization (T1MES) phantom was used for quality assurance at each center prior to subject scanning. RESULTS: The phantom analysis showed strong consistency of spin echo, T1 mapping, and T2 mapping among centers. In the entire cohort, global T1 and T2 reference values were 1193 ± 34 ms and 36 ± 2.5 ms. Global T1 and T2 values were higher in females than in males (T1: 1211 ± 29 ms vs. 1176 ± 30 ms, p < 0.001; T2: 37 ± 2.3 ms vs. 35 ± 2.5 ms, p < 0.001). There were statistical differences in global T2 across age groups (p < 0.001), but not in global T1. Linear regression showed no correlation between age and global T1 or T2 values. In males, positive correlation was found between heart rate and global T1 (r = 0.479, p < 0.001). CONCLUSIONS: Using phantom-validated imaging sequences, we provide reference ranges for myocardial T1 and T2 values on 3T scanners in healthy Chinese adults, which can be applied across participating sites. Trial registration URL: http://www.chictr.org.cn/index.aspx . Unique identifier: ChiCTR1900025518. Registration name: 3T magnetic resonance myocardial quantitative imaging standardization and reference value study: a multi-center clinical study.


Assuntos
População do Leste Asiático , Coração , Masculino , Feminino , Adulto , Humanos , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Valores de Referência , Valor Preditivo dos Testes , Coração/diagnóstico por imagem , Miocárdio/patologia , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Reprodutibilidade dos Testes
5.
Front Bioeng Biotechnol ; 11: 1199220, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37388772

RESUMO

Tendon wounds are a worldwide health issue affecting millions of people annually. Due to the characteristics of tendons, their natural restoration is a complicated and lengthy process. With the advancement of bioengineering, biomaterials, and cell biology, a new science, tissue engineering, has developed. In this field, numerous ways have been offered. As increasingly intricate and natural structures resembling tendons are produced, the results are encouraging. This study highlights the nature of the tendon and the standard cures that have thus far been utilized. Then, a comparison is made between the many tendon tissue engineering methodologies proposed to date, concentrating on the ingredients required to gain the structures that enable appropriate tendon renewal: cells, growth factors, scaffolds, and scaffold formation methods. The analysis of all these factors enables a global understanding of the impact of each component employed in tendon restoration, thereby shedding light on potential future approaches involving the creation of novel combinations of materials, cells, designs, and bioactive molecules for the restoration of a functional tendon.

6.
Artigo em Inglês | MEDLINE | ID: mdl-37178241

RESUMO

Presently, there are many drugs for the treatment of atherosclerosis (AS), among which lipid-lowering, anti-inflammatory, and antiproliferative drugs have been the most studied. These drugs have been shown to have inhibitory effects on the development of AS. Nanoparticles are suitable for AS treatment research due to their fine-tunable and modifiable properties. Compared with drug monotherapy, experimental results have proven that the effects of nanoparticle-encapsulated drugs are significantly enhanced. In addition to nanoparticles containing a single drug, there have been many studies on collaborative drug treatment, collaborative physical treatment (ultrasound, near-infrared lasers, and external magnetic field), and the integration of diagnosis and treatment. This review provides an introduction to the therapeutic effects of nanoparticles loaded with drugs to treat AS and summarizes their advantages, including increased targeting ability, sustained drug release, improved bioavailability, reduced toxicity, and inhibition of plaque and vascular stenosis.

7.
Beilstein J Nanotechnol ; 14: 262-279, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895440

RESUMO

Immune clearance and insufficient targeting have limited the efficacy of existing therapeutic strategies for cancer. Toxic side effects and individual differences in response to treatment have further limited the benefits of clinical treatment for patients. Biomimetic cancer cell membrane-based nanotechnology has provided a new approach for biomedicine to overcome these obstacles. Biomimetic nanoparticles exhibit various effects (e.g., homotypic targeting, prolonging drug circulation, regulating the immune system, and penetrating biological barriers) after encapsulation by cancer cell membranes. The sensitivity and specificity of diagnostic methods will also be improved by utilizing the properties of cancer cell membranes. In this review, different properties and functions of cancer cell membranes are presented. Utilizing these advantages, nanoparticles can exhibit unique therapeutic capabilities in various types of diseases, such as solid tumors, hematological malignancies, immune system diseases, and cardiovascular diseases. Furthermore, cancer cell membrane-encapsulated nanoparticles show improved effectiveness and efficiency in combination with current diagnostic and therapeutic methods, which will contribute to the development of individualized treatments. This strategy has promising clinical translation prospects, and the associated challenges are discussed.

8.
Molecules ; 29(1)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38202816

RESUMO

Heterostructured materials show great potential to enhance the specific capacity, rate performance and cycling lifespan of lithium-ion batteries owing to their unique interfaces, robust architectures, and synergistic effects. Herein, a polypyrrole (PPy)-coated nanotube-like Mo3S4/CoMo2S4 heterostructure is prepared by the hydrothermal and subsequent in situ polymerization methods. The well-designed nanotube-like structure is beneficial to relieve the serious volume changes and facilitate the infiltration of electrolytes during the charge/discharge process. The Mo3S4/CoMo2S4 heterostructure could effectively enhance the electrical conductivity and Li+ transport kinetics owing to the refined energy band structure and the internal electric field at the heterostructure interface. Moreover, the conductive PPy-coated layer could inhibit the obvious volume expansion like a firm armor and further avoid the pulverization of the active material and aggregation of generated products. Benefiting from the synergistic effects of the well-designed heterostructure and PPy-coated nanotube-like architecture, the prepared Mo3S4/CoMo2S4 heterostructure delivers high reversible capacity (1251.3 mAh g-1 at 300 mA g-1), superior rate performance (340.3 mAh g-1 at 5.0 A g-1) and excellent cycling lifespan (744.1 mAh g-1 after 600 cycles at a current density of 2.0 A g-1). Such a design concept provides a promising strategy towards heterostructure materials to enhance their lithium storage performances and boost their practical applications.

9.
IEEE J Biomed Health Inform ; 26(12): 6047-6057, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36094997

RESUMO

Compared to computed tomography (CT), magnetic resonance imaging (MRI) is more sensitive to acute ischemic stroke lesion. However, MRI is time-consuming, expensive, and susceptible to interference from metal implants. Generating MRI images from CT images can address the limitations of MRI. The key problem in the process is obtaining lesion information from CT. In this study, we propose a cross-modal image generation algorithm from CT to MRI for acute ischemic stroke by combining radiomics with generative adversarial networks. First, the lesion candidate region was obtained using radiomics, the radiomic features of the region were extracted, and the feature with the largest information gain was selected and visualized as a feature map. Then, the concatenation of the extracted feature map and the CT image was input in the generator. We added a residual module after the downsampling of the generator, following the general shape of U-Net, which can deepen the network without causing degradation problems. In addition, we introduced the lesion feature similarity loss function to focus the model on the similarity of the lesion. Through the subjective judgment of two experienced radiologists and using evaluation metrics, the results showed that the generated MRI images were very similar to the real MRI images. Moreover, the locations of the lesions were correct, and the shapes of lesions were similar to those of the real lesions, which can help doctors with timely diagnosis and treatment.


Assuntos
AVC Isquêmico , Humanos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Tomografia Computadorizada por Raios X/métodos , Imageamento por Ressonância Magnética/métodos
10.
Quant Imaging Med Surg ; 11(11): 4522-4529, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34737920

RESUMO

BACKGROUND: To validate the feasibility of generating high-resolution intravascular 3.0 Tesla (T) magnetic resonance imaging of the coronary artery wall to further plaque imaging. METHODS: A receive-only 0.014-inch diameter magnetic resonance imaging guidewire (MRIG) was manufactured for intravascular imaging within a phantom experiment and the coronary artery wall of the swine. For coronary artery wall imaging, both high-resolution images and conventional resolution images were acquired. A 16-channel commercial surface coil for magnetic resonance imaging was employed for the control group. RESULTS: For the phantom experiment, the MRIG showed a higher signal-to-noise ratio than the surface coil. The peak signal-to-noise ratio of the MRIG and the surface coil-generated imaging were 213.6 and 19.8, respectively. The signal-to-noise ratio decreased rapidly as the distance from the MRIG increased. For the coronary artery wall experiment, the vessel wall imaging by the MRIG could be identified clearly, whereas the vessel wall imaging by the surface coil was blurred. The average signal-to-noise ratio of the artery wall was 21.1±5.40 by the MRIG compared to 8.4±2.19 by the surface coil, where the resolution was set at 0.2 mm × 0.2 mm × 2 mm. As expected, the high-resolution sequence clearly showed more details than the conventional resolution sequence set at 0.7 mm × 0.7 mm × 2.0 mm. Histological examination showed no evidence of mechanical injuries in the target vessel walls. CONCLUSIONS: The study validated the feasibility of generating magnetic resonance imaging (MRI) at 0.2 mm × 0.2 mm × 2 mm for the coronary artery wall using a 0.014 inch MRIG.

11.
Biomed Res Int ; 2020: 8864756, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33274231

RESUMO

This study aims at analyzing the separability of acute cerebral infarction lesions which were invisible in CT. 38 patients, who were diagnosed with acute cerebral infarction and performed both CT and MRI, and 18 patients, who had no positive finding in either CT or MRI, were enrolled. Comparative studies were performed on lesion and symmetrical regions, normal brain and symmetrical regions, lesion, and normal brain regions. MRI was reconstructed and affine transformed to obtain accurate lesion position of CT. Radiomic features and information gain were introduced to capture efficient features. Finally, 10 classifiers were established with selected features to evaluate the effectiveness of analysis. 1301 radiomic features were extracted from candidate regions after registration. For lesion and their symmetrical regions, there were 280 features with information gain greater than 0.1 and 2 features with information gain greater than 0.3. The average classification accuracy was 0.6467, and the best classification accuracy was 0.7748. For normal brain and their symmetrical regions, there were 176 features with information gain greater than 0.1, 1 feature with information gain greater than 0.2. The average classification accuracy was 0.5414, and the best classification accuracy was 0.6782. For normal brain and lesions, there were 501 features with information gain greater than 0.1 and 1 feature with information gain greater than 0.5. The average classification accuracy was 0.7480, and the best classification accuracy was 0.8694. In conclusion, the study captured significant features correlated with acute cerebral infarction and confirmed the separability of acute lesions in CT, which established foundation for further artificial intelligence-assisted CT diagnosis.


Assuntos
Inteligência Artificial , Infarto Cerebral/diagnóstico por imagem , Infarto Cerebral/diagnóstico , Diagnóstico por Computador , Tomografia Computadorizada por Raios X , Doença Aguda , Adulto , Algoritmos , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade
12.
Beilstein J Nanotechnol ; 11: 1000-1009, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32704462

RESUMO

The multimodal magnetic resonance imaging (MRI) technique has been extensively studied over the past few years since it offers complementary information that can increase diagnostic accuracy. Simple methods to synthesize contrast agents are necessary for the development of multimodal MRI. Herein, uniformly distributed Fe3O4/Gd2O3 nanocubes for T 1-T 2 dual-mode MRI contrast agents were successfully designed and synthesized. In order to increase hydrophilicity and biocompatibility, the nanocubes were coated with nontoxic 3,4-dihydroxyhydrocinnamic acid (DHCA). The results show that iron (Fe) and gadolinium (Gd) were homogeneously distributed throughout the Fe3O4/Gd2O3-DHCA (FGDA) nanocubes. Relaxation time analysis was performed on the images obtained from the 3.0 T scanner. The results demonstrated that r 1 and r 2 maximum values were 67.57 ± 6.2 and 24.2 ± 1.46 mM-1·s-1, respectively. In vivo T 1- and T 2-weighted images showed that FGDA nanocubes act as a dual-mode contrast agent enhancing MRI quality. Overall, these experimental results suggest that the FGDA nanocubes are interesting tools that can be used to increase MRI quality, enabling accurate clinical diagnostics.

13.
J Tissue Eng Regen Med ; 14(8): 1175-1184, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32592611

RESUMO

Osteoarthritis is a degenerative joint disease. Currently, no effective therapeutic exists for osteoarthritis in the clinic setting. Inflammatory response and autophagy are key players in the occurrence and prognosis of osteoarthritis. In recent years, the regulation of inflammation and autophagy signal pathway has been touted as a potential treatment course for osteoarthritis. Saikosaponin D has anti-inflammatory and induces autophagy effects via inhibiting the nuclear transcription factor-κB, mTOR signaling pathways. Here in the report, we analyze and summarize recent evidences pertaining to the relationship between Saikosaponin and osteoarthritis. Published studies were scoured for in research databases, such as PubMed and Scopus with the keywords Saikosaponin and osteoarthritis. Phosphatidylinositol 3-kinase (PI3k)/Akt/mTOR signaling pathway is an important autophagy modulator, and can regulate chondrocytic autophagy, inflammation, and apoptosis. Saikosaponin D alleviates inflammation and regulates autophagy by inhibiting the PI3k/Akt/mTOR signaling pathway. Saikosaponin D could be a potential therapeutic drug for osteoarthritis.


Assuntos
Autofagia/efeitos dos fármacos , Ácido Oleanólico/análogos & derivados , Osteoartrite , Saponinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Humanos , NF-kappa B/metabolismo , Ácido Oleanólico/uso terapêutico , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Osteoartrite/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
14.
Cell Mol Neurobiol ; 40(7): 1067-1073, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31993863

RESUMO

Spinal cord injury leads to loss of sensory motor functions below the damaged area, and can significantly affects physical and mental health. An effective spinal cord injury treatment is currently unavailable, in part, because of the intricacy of the brain, as well as the complex pathophysiological mechanism of the injury. Inflammation is an important biological process in multitudinous diseases, with no exception for spinal cord injury. Nuclear factor kappa beta (NF-κB) signaling pathway is a key inflammatory element, as it is involved in cell survival, apoptosis, proliferation, differentiation, and immune response. Activation of the NF-κB signaling pathway leads to the release of a large number of inflammatory factors that can affect tissue repair. Hence, the inhibition of inflammatory responses could improve the repair of injured spinal cord tissues. Secretory leukocyte protease inhibitor (SLPI) has anti-inflammatory and anti-bacterial properties, and promotes wound healing. SLPI can bind to the promoter region of tumor necrosis factor-αand interleukin-8 (IL-8) to inhibit the NF-κB signaling pathway. Additionally, SLPI can reduce secondary damages after spinal cord injury, and prevent further complications. In this report, we analyze the pathophysiological mechanism of spinal cord injury, the role of NF-κB signaling pathway following spinal cord injury, and how SLPI regulates the NF-κB signaling pathway to curtail inflammatory reaction.


Assuntos
Inflamação/metabolismo , Transdução de Sinais/efeitos dos fármacos , Traumatismos da Medula Espinal/metabolismo , Medula Espinal/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Humanos , Inflamação/tratamento farmacológico , Transdução de Sinais/fisiologia , Medula Espinal/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Fator de Necrose Tumoral alfa/farmacologia
15.
Acta Histochem ; 120(8): 734-740, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30143315

RESUMO

OBJECTIVE: To directionally-differentiate dermis-derived mesenchymal stem cells (DMSCs) into vascular endothelial cells (VECs) in vitro, providing an experimental basis for studies on the pathogenesis and treatment of vascular diseases. METHODS: After separation by adherent culture, VEC line supernatant, vascular endothelial growth factor (VEGF), bone morphogenetic protein-4 and hypoxia were used for the differentiation of VECs from DMSCs. The cell type was authenticated by flow cytometry, matrigel angiogenesis assay in vitro, and immunofluorescent staining during differentiation. The VEGF concentration was investigated by enzyme-linked immunosorbent assay. RESULTS: After 28 days of differentiation, the cell surface marker CD31 was significantly positive (80%-90%) by flow cytometry in the VEC line-conditioned culture, which was significantly higher than in the other groups. Differentiated DMSCs had the ability to ingest Dil-ac-LDL and vascularize in the conditioned culture, but not in the other groups. In the VEC line supernatant, the concentration of VEGF was very low. The VEGF concentration changed along with the differentiation into VECs in the medium of the conditioned culture group. CONCLUSION: VEC line supernatant can induce the differentiation of DMSCs into VECs, possibly through the pathway except VEGF.


Assuntos
Derme/citologia , Células Endoteliais/citologia , Endotélio/citologia , Células-Tronco Mesenquimais/citologia , Adulto , Técnicas de Cultura de Células , Diferenciação Celular , Meios de Cultivo Condicionados , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Masculino , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Fator A de Crescimento do Endotélio Vascular
17.
Radiology ; 282(1): 103-112, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27404050

RESUMO

Purpose To determine the feasibility of using intraesophageal radiofrequency (RF) hyperthermia to enhance local chemotherapy in a rat model with orthotopic esophageal squamous cancers. Materials and Methods The animal protocol was approved by the institutional animal care and use committee and the institutional review board. Human esophageal squamous cancer cells were transduced with luciferase lentiviral particles. Cancer cells, mice with subcutaneous cancer esophageal xenografts, and nude rats with orthotopic esophageal cancers in four study groups of six animals per group were treated with (a) combination therapy of magnetic resonance imaging heating guidewire-mediated RF hyperthermia (42°C) plus local chemotherapy (cisplatin and 5-fluorouracil), (b) chemotherapy alone, (c) RF hyperthermia alone, and (d) phosphate-buffered saline. Bioluminescent optical imaging and transcutaneous ultrasonographic imaging were used to observe bioluminescence signal and changes in tumor size among the groups over 2 weeks, which were correlated with subsequent histologic results. The nonparametric Mann-Whitney U test was used for comparisons of variables. Results Compared with chemotherapy alone, RF hyperthermia alone, and phosphate-buffered saline, combination therapy with RF hyperthermia and chemotherapy induced the lowest cell proliferation (relative absorbance of formazan: 23.4% ± 7, 44.6% ± 7.5, 95.8% ± 2, 100%, respectively; P < .0001), rendered the smallest relative tumor volume (0.65 mm3 ± 0.15, P < .0001) and relative bioluminescence optical imaging photon signal (0.57 × 107 photons per second per square millimeter ± 0.15, P < .001) of mice with esophageal cancer xenografts, as well as the smallest relative tumor volume (0.68 mm3 ± 0.13, P < .05) and relative photon signal (0.56 × 107 photons per second per square millimeter ± 0.11. P < .001) of rat orthotopic esophageal cancers. Conclusion Intraesophageal RF hyperthermia can enhance the effect of chemotherapy on esophageal squamous cell cancers. © RSNA, 2016.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma de Células Escamosas/terapia , Neoplasias Esofágicas/terapia , Hipertermia Induzida/métodos , Animais , Apoptose , Carcinoma de Células Escamosas/diagnóstico por imagem , Terapia Combinada , Modelos Animais de Doenças , Neoplasias Esofágicas/diagnóstico por imagem , Carcinoma de Células Escamosas do Esôfago , Xenoenxertos , Imageamento por Ressonância Magnética , Camundongos Nus , Microscopia Confocal , Ratos , Ratos Nus , Taxa de Sobrevida , Carga Tumoral , Células Tumorais Cultivadas , Ultrassonografia
18.
Radiology ; 270(2): 400-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24471389

RESUMO

PURPOSE: To determine whether magnetic resonance (MR) imaging heating guidewire-mediated radiofrequency (RF) hyperthermia could enhance the therapeutic effect of gemcitabine and 5-fluorouracil (5-FU) in a cholangiocarcinoma cell line and local deposit doses of chemotherapeutic drugs in swine common bile duct (CBD) walls. MATERIALS AND METHODS: The animal protocol was approved by the institutional animal care and use committee. Green fluorescent protein-labeled human cholangiocarcinoma cells and cholangiocarcinomas in 24 mice were treated with (a) combination therapy with chemotherapy (gemcitabine and 5-FU) plus RF hyperthermia, (b) chemotherapy only, (c) RF hyperthermia only, or (d) phosphate-buffered saline. Cell proliferation was quantified, and tumor changes over time were monitored with 14.0-T MR imaging and optical imaging. To enable further validation of technical feasibility, intrabiliary local delivery of gemcitabine and 5-FU was performed by using a microporous balloon with (eight pigs) or without (eight pigs) RF hyperthermia. Chemotherapy deposit doses in the bile duct walls were quantified by means of high-pressure liquid chromatography. The nonparametric Mann-Whitney U test and the paired-sample Wilcoxon signed rank test were used for data analysis. RESULTS: Combination therapy induced lower mean levels of cell proliferation than chemotherapy only and RF hyperthermia only (0.39 ± 0.13 [standard deviation] vs 0.87 ± 0.10 and 1.03 ± 0.13, P < .001). Combination therapy resulted in smaller relative tumor volume than chemotherapy only and RF hyperthermia only (0.65 ± 0.03 vs 1.30 ± 0.021 and 1.37 ± 0.05, P = .001). Only in the combination therapy group did both MR imaging and optical imaging show substantial decreases in apparent diffusion coefficients and fluorescent signals in tumor masses immediately after the treatments. Chemotherapy quantification showed a higher average drug deposit dose in swine CBD walls with intrabiliary RF hyperthermia than without it (gemcitabine: 0.32 mg/g of tissue ± 0.033 vs 0.260 mg/g ± 0.030 and 5-FU: 0.660 mg/g ± 0.060 vs 0.52 mg/g ± 0.050, P < .05). CONCLUSION: The use of intrabiliary MR imaging heating guidewire-mediated RF hyperthermia can enhance the chemotherapeutic effect on a human cholangiocarcinoma cell line and local drug deposition in swine CBD tissues.


Assuntos
Neoplasias dos Ductos Biliares/terapia , Colangiocarcinoma/terapia , Desoxicitidina/análogos & derivados , Fluoruracila/farmacologia , Hipertermia Induzida , Imageamento por Ressonância Magnética/métodos , Animais , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Terapia Combinada , Desoxicitidina/farmacologia , Humanos , Camundongos , Ondas de Rádio , Suínos , Gencitabina
19.
J Biomed Mater Res A ; 102(7): 2163-72, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23894021

RESUMO

Thermo-sensitive polyelectrolyte complex (PEC) micelles assembled from two biocompatible graft copolymers chitosan-g-poly(N-isopropylacrylamide) (CS-g-PNIPAM) and carboxymethyl cellulose-g-poly(N-isopropylacrylamide) (CMC-g-PNIPAM) were prepared for delivery of 5-fluorouracil (5-FU). The PEC micelles showed a narrow size distribution with core-shell structure, in which the core formed from positively charged CS and negatively charged CMC by electrostatic interactions and the shell formed from thermo-sensitive PNIPAM. The synthesized PEC micelles have lower critical solution temperatures (LCST) in the region of 37°C, which is favorable for smart drug delivery applications. The hydrogen bondings between PEC micelles and 5-FU increased the drug loading. Changing temperature, pH or ionic strength, a sustained and controlled release was observed due to the deformation of PEC micelles. Adding glutaraldehyde, a chemical crosslinking reagent, was an efficient way to reinforce the micelles structure and decrease the initial burst release. Cytotoxicity assays showed that drug-loaded PEC micelles retained higher cell inhibition efficiency in HeLa cells.


Assuntos
Materiais Biocompatíveis , Portadores de Fármacos , Eletrólitos , Micelas , Polímeros , Antimetabólitos Antineoplásicos/administração & dosagem , Fluoruracila/administração & dosagem , Microscopia Eletrônica de Transmissão
20.
NMR Biomed ; 26(12): 1762-7, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24038282

RESUMO

The aim of this study was to evaluate the feasibility of using diffusion-weighted MRI to monitor the early response of pancreatic cancers to radiofrequency heat (RFH)-enhanced chemotherapy. Human pancreatic carcinoma cells (PANC-1) in different groups and 24 mice with pancreatic cancer xenografts in four groups were treated with phosphate-buffered saline (PBS) as a control, RFH at 42 °C, gemcitabine and gemcitabine plus RFH at 42 °C. One day before and 1, 7 and 14 days after treatment, diffusion-weighted MRI and T2 -weighted imaging were applied to monitor the apparent diffusion coefficients (ADCs) of tumors and tumor growth. MRI findings were correlated with the results of tumor apoptosis analysis. In the in vitro experiments, the quantitative viability assay showed lower relative cell viabilities for treatment with gemcitabine plus RFH at 42 °C relative to treatment with RFH only and gemcitabine only (37 ± 5% versus 65 ± 4% and 58 ± 8%, respectively, p < 0.05). In the in vivo experiments, the combination therapy resulted in smaller relative tumor volumes than RFH only and chemotherapy only (0.82 ± 0.17 versus 2.23 ± 0.90 and 1.64 ± 0.44, respectively, p = 0.003). In vivo, 14-T MRI demonstrated a remarkable decrease in ADCs at day 1 and increased ADCs at days 7 and 14 in the combination therapy group. The apoptosis index in the combination therapy group was significantly higher than those in the chemotherapy-only, RFH-only and PBS treatment groups (37 ± 6% versus 20 ± 5%, 8 ± 2% and 3 ± 1%, respectively, p < 0.05). This study confirms that it is feasible to use MRI to monitor RFH-enhanced chemotherapy in pancreatic cancers, which may present new options for the efficient treatment of pancreatic malignancies using MRI/RFH-integrated local chemotherapy.


Assuntos
Imagem de Difusão por Ressonância Magnética , Temperatura Alta , Neoplasias Pancreáticas/tratamento farmacológico , Ondas de Rádio , Animais , Apoptose , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA