Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Plant Cell Environ ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38798197

RESUMO

The knowledge of biogenesis and target regulation of the phased small interfering RNAs (phasiRNAs) needs continuous update, since the phasiRNA loci are dynamically evolved in plants. Here, hundreds of phasiRNA loci of Arabidopsis thaliana were identified in distinct tissues and under different temperature. In flowers, most of the 24-nt loci are RNA-dependent RNA polymerase 2 (RDR2)-dependent, while the 21-nt loci are RDR6-dependent. Among the RDR-dependent loci, a significant portion is Dicer-like 1-dependent, indicating the involvement of microRNAs in their expression. Besides, two TAS candidates were discovered. Some interesting features of the phasiRNA loci were observed, such as the strong strand bias of phasiRNA generation, and the capacity of one locus for producing phasiRNAs by different increments. Both organ specificity and temperature sensitivity were observed for phasiRNA expression. In leaves, the TAS genes are highly activated under low temperature. Several trans-acting siRNA-target pairs are also temperature-sensitive. In many cases, the phasiRNA expression patterns correlate well with those of the processing signals. Analysis of the rRNA-depleted degradome uncovered several phasiRNA loci to be RNA polymerase II-independent. Our results should advance the understanding on phasiRNA biogenesis and regulation in plants.

3.
Front Plant Sci ; 13: 958520, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36131801

RESUMO

To adapt to variable natural conditions, plants have evolved several strategies to respond to different environmental stresses. MicroRNA (miRNA)-mediated gene regulation is one of such strategies. Variants, e.g., single nucleotide polymorphisms (SNPs) within the mature miRNAs or their target sites may cause the alteration of regulatory networks and serious phenotype changes. In this study, we proposed a novel approach to construct a miRNA-miRNA crosstalk network in Arabidopsis thaliana based on the notion that two cooperative miRNAs toward common targets are under a strong pressure to be inherited together across ecotypes. By performing a genome-wide scan of the SNPs within the mature miRNAs and their target sites, we defined a "regulation fate profile" to describe a miRNA-target regulation being static (kept) or dynamic (gained or lost) across 1,135 ecotypes compared with the reference genome of Col-0. The cooperative miRNA pairs were identified by estimating the similarity of their regulation fate profiles toward the common targets. The reliability of the cooperative miRNA pairs was supported by solid expressional correlation, high PPImiRFS scores, and similar stress responses. Different combinations of static and dynamic miRNA-target regulations account for the cooperative miRNA pairs acting on various biological characteristics of miRNA conservation, expression, homology, and stress response. Interestingly, the targets that are co-regulated dynamically by both cooperative miRNAs are more likely to be responsive to stress. Hence, stress-related genes probably bear selective pressures in a certain group of ecotypes, in which miRNA regulations on the stress genes reprogram. Finally, three case studies showed that reprogramming miRNA-miRNA crosstalk toward the targets in specific ecotypes was associated with these ecotypes' climatic variables and geographical locations. Our study highlights the potential of miRNA-miRNA crosstalk as a genetic basis underlying environmental adaptation in natural populations.

4.
Sci Adv ; 8(27): eabn9458, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35857463

RESUMO

The Down syndrome cell adhesion molecule 1 (Dscam1) gene can generate tens of thousands of isoforms via alternative splicing, which is essential for nervous and immune functions. Chelicerates generate approximately 50 to 100 shortened Dscam (sDscam) isoforms by alternative promoters, similar to mammalian protocadherins. Here, we reveal that trans-splicing markedly increases the repository of sDscamß isoforms in Tetranychus urticae. Unexpectedly, every variable exon cassette engages in trans-splicing with constant exons from another cluster. Moreover, we provide evidence that competing RNA pairing not only governs alternative cis-splicing but also facilitates trans-splicing. Trans-spliced sDscam isoforms mediate cell adhesion ability but exhibit the same homophilic binding specificity as their cis-spliced counterparts. Thus, we reveal a single sDscam locus that generates diverse adhesion molecules through cis- and trans-splicing coupled with alternative promoters. These findings expand understanding of the mechanism underlying molecular diversity and have implications for the molecular control of neuronal and/or immune specificity.


Assuntos
Proteínas de Drosophila , Processamento Alternativo , Animais , Proteínas de Drosophila/genética , Mamíferos/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA/metabolismo , Trans-Splicing
5.
Plant Genome ; 15(2): e20210, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35475547

RESUMO

As one of the important species belonging to the Bletilla genus of Orchidaceae, Bletilla striata (Thunb.) Rchb. f., possesses both ornamental and medicinal values. Its dried tubers are used as a traditional Chinese medicine, and several secondary metabolites have been indicated to be the active ingredients. However, the molecular mechanisms related to the regulation of secondary metabolism have not been characterized in B. striata. In this study, integrated analysis of RNA sequencing (RNA-seq), small RNA sequencing (sRNA-seq), and degradome sequencing (degradome-seq) data from three organs (leaf, root, and tuber) of B. striata provided us with a comprehensive view of the microRNA (miRNA)-mediated regulatory network. Firstly, based on the RNA-seq data, the organ-specific expression patterns of the protein-coding genes, especially for those related to secondary metabolism, were investigated. Secondly, 342 conserved miRNA candidates were identified from B. striata. These miRNAs were assigned to 88 families, some of which were selected for expression pattern analysis. Additionally, 31 hairpin-structured precursors encoding 23 novel miRNAs were uncovered from the transcriptome assembly. Thirdly, based on the degradome signatures, 1,142 validated miRNA-target pairs (involving 167 conserved miRNAs and six novel miRNAs and 51 target genes) were included in the regulatory network. Organ-specific expression level comparison between the miRNAs and their targets revealed some interesting miRNA-target pairs. Fourthly, some valuable subnetworks were extracted for further functional studies. Additionally, some regulatory pathways were indicated to be monocot specific. Summarily, our results lay a solid basis for in-depth studies on the regulatory mechanisms underlying the production of the medicinal ingredients in B. striata.


RNA-, sRNA-, and degradome-seq were performed for three organs of B. striata. Organ-specific expression patterns of the protein-coding genes were analyzed. A total of 365 miRNAs were identified and subject to expression pattern analysis. A total of 1,142 miRNA-target pairs were validated for network construction. Some miRNA-mediated regulatory pathways were indicated to be monocot specific.


Assuntos
MicroRNAs , Orchidaceae , Plantas Medicinais , MicroRNAs/genética , Orchidaceae/genética , Orchidaceae/metabolismo , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , RNA de Plantas/genética , Transcriptoma
6.
J Plant Physiol ; 270: 153632, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35114616

RESUMO

The importance of the evolutionarily conserved Argonaute (AGO) proteins has been well recognized for their involvement in the RNA interference pathways. Recent discoveries in animals demonstrated that AGOs also participate in alternative splicing (AS). Motivated by the question whether the AGO proteins are also functional in RNA splicing in plants, we searched for the introns excised through an AGO-dependent manner in Arabidopsis (Arabidopsis thaliana). RNA sequencing (RNA-seq) data analysis uncovered hundreds of the introns up- or down-regulated in the ago1 and ago4 mutants, respectively. For different genes, AGOs might play either a positive or a negative role in intron excision, which was further validated by reverse transcription-polymerase chain reaction (RT-PCR). Some introns were specifically regulated by one of the AGO proteins, while some were regulated by both AGOs. Besides, a large portion of the AGO-dependent introns were organ-specifically regulated. RNA immunoprecipitation combined with high-throughput sequencing (RIP-seq) revealed that both AGOs preferentially bound to the intronic regions, supporting their high intron binding affinities. Immunoprecipitation followed by mass spectrometry (IP-MS) was performed to identify the proteins potentially interacting with the two AGOs. Six novel interactors (two interacting with AGO1 and four with both AGOs) involved in mRNA binding were uncovered, which might facilitate AGO-intron recognition. Analysis of the RNA-seq data from the rice (Oryza sativa) ago18 mutants revealed that hundreds of the introns were expressed in an AGO18-dependent manner. In summary, our results point to the novel role of the plant AGOs in intron splicing, paving a way for further studies on the mechanisms underlying AGO-mediated RNA splicing.

7.
J Plant Physiol ; 270: 153636, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35124290

RESUMO

miRBase was established as an authoritative microRNA (miRNA) database with a uniform nomenclature system and a searchable web interface. Recent popularization of the next-generation sequencing technology in small RNA cloning led to an explosive growth of the miRNA repository. Although a specific definition system has been proposed for the plant miRNAs, the quality of the plant miRNA registries deposited in miRBase is largely dependent on the submitters. With the growing concerns over the annotation quality, a set of criteria for identification of the high-confidence (HC) miRNAs was recently developed by miRBase. Since miRNAs could serve as a powerful tool for crop genetic improvement and breeding, we present a brief overview of the miRBase-registered crop miRNAs in this study. A total of 54 plants were identified from the 82 Viridiplantae species in the current version of miRBase, and were regarded as the crops. A total of 6316 precursors encoding 7422 mature miRNAs (miRBase release 22.1) were included in our survey. Based on the HC annotation criteria, we performed structure- and sequencing data-based analyses of the confidence of the crop miRNAs. According to the results, we propose suggestions for improvements of the HC annotation system and, moreover, discuss strategies for creating and maintaining an HC miRNA repository of crops. Finally, we hope that this study inspires more efforts devoted to HC miRNA discoveries for crop research.

8.
BMC Plant Biol ; 21(1): 504, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724893

RESUMO

BACKGROUND: Bletilla striata is one of the important species belonging to the Bletilla genus of Orchidaceae. Since its extracts have an astringent effect on human tissues, B. striata is widely used for hemostasis and healing. Recently, some other beneficial effects have also been uncovered, such as antioxidation, antiinflammation, antifibrotic, and immunomodulatory activities. As a key step towards a thorough understanding on the medicinal ingredient production in B. striata, deciphering the regulatory codes of the metabolic pathways becomes a major task. RESULTS: In this study, three organs (roots, tubers and leaves) of B. striata were analyzed by integrating transcriptome sequencing and untargeted metabolic profiling data. Five different metabolic pathways, involved in polysaccharide, sterol, flavonoid, terpenoid and alkaloid biosynthesis, were investigated respectively. For each pathway, the expression patterns of the enzyme-coding genes and the accumulation levels of the metabolic intermediates were presented in an organ-specific way. Furthermore, the relationships between enzyme activities and the levels of the related metabolites were partially inferred. Within the biosynthetic pathways of polysaccharides and flavonoids, long-range phytochemical transportation was proposed for certain metabolic intermediates and/or the enzymes. CONCLUSIONS: The data presented by this work could strengthen the molecular basis for further studies on breeding and medicinal uses of B. striata.


Assuntos
Redes e Vias Metabólicas/genética , Orchidaceae/química , Orchidaceae/genética , Orchidaceae/metabolismo , Extratos Vegetais/metabolismo , Folhas de Planta/química , Raízes de Plantas/química , Tubérculos/química , China , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Plantas Medicinais/química , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Transcriptoma
9.
BMC Genomics ; 22(1): 93, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33516199

RESUMO

BACKGROUND: The microRNAs(miRNA)-derived secondary phased small interfering RNAs (phasiRNAs) participate in post-transcriptional gene silencing and play important roles in various bio-processes in plants. In rice, two miRNAs, miR2118 and miR2275, were mainly responsible for triggering of 21-nt and 24-nt phasiRNAs biogenesis, respectively. However, relative fewer phasiRNA biogenesis pathways have been discovered in rice compared to other plant species, which limits the comprehensive understanding of phasiRNA biogenesis and the miRNA-derived regulatory network. RESULTS: In this study, we performed a systematical searching for phasiRNA biogenesis pathways in rice. As a result, five novel 21-nt phasiRNA biogenesis pathways and five novel 24-nt phasiRNA biogenesis pathways were identified. Further investigation of their regulatory function revealed that eleven novel phasiRNAs in 21-nt length recognized forty-one target genes. Most of these genes were involved in the growth and development of rice. In addition, five novel 24-nt phasiRNAs targeted to the promoter of an OsCKI1 gene and thereafter resulted in higher level of methylation in panicle, which implied their regulatory function in transcription of OsCKI1,which acted as a regulator of rice development. CONCLUSIONS: These results substantially extended the information of phasiRNA biogenesis pathways and their regulatory function in rice.


Assuntos
MicroRNAs , Oryza , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Oryza/genética , RNA de Plantas/genética , RNA Interferente Pequeno
10.
Wiley Interdiscip Rev RNA ; 12(1): e1626, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32929887

RESUMO

Alternative splicing greatly expands the transcriptomic and proteomic diversities related to physiological and developmental processes in higher eukaryotes. Splicing of long noncoding RNAs, and back- and trans- splicing further expanded the regulatory repertoire of alternative splicing. RNA structures were shown to play an important role in regulating alternative splicing and back-splicing. Application of novel sequencing technologies made it possible to identify genome-wide RNA structures and interaction networks, which might provide new insights into RNA splicing regulation in vitro to in vivo. The emerging transcription-folding-splicing paradigm is changing our understanding of RNA alternative splicing regulation. Here, we review the insights into the roles and mechanisms of RNA structures in alternative splicing and back-splicing, as well as how disruption of these structures affects alternative splicing and then leads to human diseases. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.


Assuntos
Processamento Alternativo , RNA Longo não Codificante , Humanos , Proteômica , Splicing de RNA , Transcriptoma
11.
PLoS One ; 15(12): e0244480, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33370386

RESUMO

Identification of the target genes of microRNAs (miRNAs), trans-acting small interfering RNAs (ta-siRNAs), and small interfering RNAs (siRNAs) is an important step for understanding their regulatory roles in plants. In recent years, many bioinformatics software packages based on small RNA (sRNA) high-throughput sequencing (HTS) and degradome sequencing data analysis have provided strong technical support for large-scale mining of sRNA-target pairs. However, sRNA-target regulation is achieved using a complex network of interactions since one transcript might be co-regulated by multiple sRNAs and one sRNA may also affect multiple targets. Currently used mining software can realize the mining of multiple unknown targets using known sRNA, but it cannot rule out the possibility of co-regulation of the same target by other unknown sRNAs. Hence, the obtained regulatory network may be incomplete. We have developed a new mining software, sRNATargetDigger, that includes two function modules, "Forward Digger" and "Reverse Digger", which can identify regulatory sRNA-target pairs bidirectionally. Moreover, it has the ability to identify unknown sRNAs co-regulating the same target, in order to obtain a more authentic and reliable sRNA-target regulatory network. Upon re-examination of the published sRNA-target pairs in Arabidopsis thaliana, sRNATargetDigger found 170 novel co-regulatory sRNA-target pairs. This software can be downloaded from http://www.bioinfolab.cn/sRNATD.html.


Assuntos
Biologia Computacional/métodos , Mineração de Dados/métodos , Redes Reguladoras de Genes , Pequeno RNA não Traduzido/metabolismo , Software , Arabidopsis/genética , Conjuntos de Dados como Assunto , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Estabilidade de RNA/genética , Pequeno RNA não Traduzido/genética
12.
Brief Bioinform ; 21(6): 1857-1874, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32706024

RESUMO

The immense therapeutic and economic values of medicinal plants have attracted increasing attention from the worldwide researchers. It has been recognized that production of the authentic and high-quality herbal drugs became the prerequisite for maintaining the healthy development of the traditional medicine industry. To this end, intensive research efforts have been devoted to the basic studies, in order to pave a way for standardized authentication of the plant materials, and bioengineering of the metabolic pathways in the medicinal plants. In this paper, the recent advances of omics studies on the medicinal plants were summarized from several aspects, including phenomics and taxonomics, genomics, transcriptomics, proteomics and metabolomics. We proposed a multi-omics data-based workflow for medicinal plant research. It was emphasized that integration of the omics data was important for plant authentication and mechanistic studies on plant metabolism. Additionally, the computational tools for proper storage, efficient processing and high-throughput analyses of the omics data have been introduced into the workflow. According to the workflow, authentication of the medicinal plant materials should not only be performed at the phenomics level but also be implemented by genomic and metabolomic marker-based examination. On the other hand, functional genomics studies, transcriptional regulatory networks and protein-protein interactions will contribute greatly for deciphering the secondary metabolic pathways. Finally, we hope that our work could inspire further efforts on the bioinformatics-assisted, integrated omics studies on the medicinal plants.


Assuntos
Biomarcadores , Biologia Computacional , Genômica , Metabolômica , Plantas Medicinais , Biomarcadores/metabolismo , Bases de Dados Factuais , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Fluxo de Trabalho
13.
RNA Biol ; 17(9): 1223-1227, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32338184

RESUMO

The plant RNA degradome was defined as an aggregate of the RNA fragments degraded from various biochemical pathways, such as RNA turnover, maturation and quality surveillance. In recent years, the degradome sequencing (degradome-seq) libraries became a rich storehouse for researchers to study on RNA processing and regulation. Here, we provided a brief overview of the uses of degradome-seq data in plant RNA biology, especially on non-coding RNA processing and small RNA-guided target cleavages. Some novel applications in RNA research area, such as in vivo mapping of the endoribonucleolytic cleavage sites, identification of conserved motifs at the 5' ends of the uncapped RNA fragments, and searching for the protein-binding regions on the transcripts, were also mentioned. More importantly, we proposed a model for the biologists to deduce the contributions of transcriptional and/or post-transcriptional regulation to gene differential expression based on degradome-seq data. Finally, we hope that the degradome-based analytical methods could be widely applied for the studies on RNA biology in eukaryotes.


Assuntos
Regulação da Expressão Gênica de Plantas , Plantas/genética , Estabilidade de RNA , RNA de Plantas/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , Processamento Pós-Transcricional do RNA
14.
Plant Mol Biol ; 103(3): 341-354, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32227258

RESUMO

KEY MESSAGE: We employed both metabolomic and transcriptomic approaches to explore the accumulation patterns of physalins, flavonoids and chlorogenic acid in Physalis angulata and revealed the genes associated with the biosynthesis of bioactive compounds under methyl-jasmonate (MeJA) treatment. Physalis angulata L. is an annual Solanaceae plant with a number of medicinally active compounds. Despite the potential pharmacological benefits of P. angulata, the scarce genomic information regarding this plant has limited the studies on the mechanisms of bioactive compound biosynthesis. To facilitate the basic understanding of the main chemical constituent biosynthesis pathways, we performed both metabolomic and transcriptomic approaches to reveal the genes associated with the biosynthesis of bioactive compounds under methyl-jasmonate (MeJA) treatment. Untargeted metabolome analysis showed that most physalins, flavonoids and chlorogenic acid were significantly upregulated. Targeted HPLC-MS/MS analysis confirmed variations in the contents of two important representative steroid derivatives (physalins B and G), total flavonoids, neochlorogenic acid, and chlorogenic acid between MeJA-treated plants and controls. Transcript levels of a few steroid biosynthesis-, flavonoid biosynthesis-, and chlorogenic acid biosynthesis-related genes were upregulated, providing a potential explanation for MeJA-induced active ingredient synthesis in P. angulata. Systematic correlation analysis identified a number of novel candidate genes associated with bioactive compound biosynthesis. These results may help to elucidate the regulatory mechanism underlying MeJA-induced active compound accumulation and provide several valuable candidate genes for further functional study.


Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxilipinas/farmacologia , Physalis/efeitos dos fármacos , Physalis/metabolismo , Proteínas de Plantas/metabolismo , Flavonoides/biossíntese , Flavonoides/química , Metaboloma , Estrutura Molecular , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , RNA de Plantas/genética , Transcriptoma
15.
Database (Oxford) ; 20192019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31231773

RESUMO

MicroRNAs (miRNAs) have been recognized as a key regulator in plant development and metabolism. Recent reports showed that the miRNAs of medicinal plants not only act as a critical modulator in secondary metabolism but also had a great potential of performing cross-kingdom gene regulation. Although several plant miRNA repositories have been publicly available, no miRNA database specific for medicinal plants has been reported to date. Here, we report the first version of MepmiRDB (medicinal plant microRNA database), which is freely accessible at http://mepmirdb.cn/mepmirdb/index.html. This database accommodates thousands of miRNA candidates belonging to 29 medicinal plant species. The miRNA information on sequences, expression patterns and regulatory networks has been included in the functional modules of the database. Specifically, the 'Sequence' module provides the sequences of the mature miRNAs and their precursors, and the structure information of the precursors. Moreover, the processing and small RNA accumulation signals on the miRNA precursors are also included in the 'Sequence' module. The organ/growth condition-specific expression information of the mature miRNAs has been stored in the 'Expression' module. The 'Interaction' module offers the information of the degradome-validated miRNA-target pairs of eight plant species. The 'Search' module enables users to search for the miRNAs by plant species and miRNA families, or by sequences. All data in this database are available for download. Taken together, the functional modules of MepmiRDB ensure its importance and timeliness for mechanistic and functional studies on the medicinal plant miRNAs.


Assuntos
Bases de Dados de Ácidos Nucleicos , Regulação da Expressão Gênica de Plantas , MicroRNAs , Plantas Medicinais , RNA de Plantas , MicroRNAs/biossíntese , MicroRNAs/genética , Plantas Medicinais/classificação , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , RNA de Plantas/biossíntese , RNA de Plantas/genética
16.
Plant Signal Behav ; 14(8): 1629267, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31184247

RESUMO

Physalis angulata L., a member of the family Solanaceae, is widely used as the folk medicine in various countries. Continuous research efforts are devoted to the discovery of the effective medicinal ingredients from Physalis angulata. However, due to the limited resources of genome and transcriptome sequencing data, only a few studies have been performed at the gene regulatory level. In this study, the transcriptomes of five organs (roots, stems, leaves, flowers and fruits) of Physalis angulata were reported. Based on the transcriptome assembly containing 196,117 unique transcripts, a total of 17,556 SSRs (simple sequence repeats) were identified, which could be useful RNA-based barcoding for discrimination of the plants closely relative to Physalis angulata. Additionally, 24 transcripts were discovered to be the potential microRNA (miRNA) precursors which encode a total of 31 distinct mature miRNAs. Some of these precursors showed organ-specific expression patterns. Target prediction revealed 116 miRNA-target pairs, involving 31 miRNAs and 83 target transcripts in Physalis angulata. Taken together, our results could serve as the data resource for in-depth studies on the molecular regulatory mechanisms related to the production of medicinal ingredients in Physalis angulata.


Assuntos
MicroRNAs/genética , Physalis/genética , Transcriptoma/genética , Regulação da Expressão Gênica de Plantas/genética , Repetições de Microssatélites/genética
17.
Plant Signal Behav ; 14(9): 1629268, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31187662

RESUMO

Arsenic (As) contamination in subsoil and groundwater is a big problem, especially in many South-East Asian countries. As a staple crop growing under flooded condition in these areas, rice (Oryza sativa L.) becomes a big threat to human health through the food chain since As is highly accumulated in grains. Thus, reducing As accumulation in rice through molecular breeding and identification of rice varieties with low As content are the pressing issues. However, the current understanding on the molecular mechanism of As stress response is still limited for rice. In this study, we performed a comprehensive search for the As-responsive small RNAs (sRNAs) of rice. Briefly, 4,762 and 18,152 sRNAs were identified to be highly activated under As stress in roots and shoots respectively, while 14,603 and 8,308 sRNAs were intensively repressed by As treatment in roots and shoots, respectively. A number of the As-responsive sRNAs found their loci on tRNAs, rRNAs or long non-coding RNAs (lncRNAs). Interestingly, these loci preferentially distributed on the 5' halves of the tRNA, rRNA or lncRNA precursors. Among the above-identified As-responsive sRNAs, 252 Argonaute 1 (AGO1)-enriched sRNAs were extracted for target identification, resulting in 200 pairs of sRNA-protein-coding target interactions. Many targets are functionally involved in the development, stress response, reproduction, or lipid metabolism. Additionally, 56 lncRNAs were discovered to be targeted by nine AGO1-enriched sRNAs, indicating the potential involvement of these lncRNAs in As signaling. Taken together, our results could expand the understanding on the non-coding RNA-mediated As stress response in rice.


Assuntos
Arsênio/toxicidade , Oryza/genética , Oryza/fisiologia , RNA não Traduzido/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Redes Reguladoras de Genes/efeitos dos fármacos , Loci Gênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Fases de Leitura Aberta , Oryza/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , RNA não Traduzido/metabolismo , Estresse Fisiológico/efeitos dos fármacos
18.
Biochim Biophys Acta Gene Regul Mech ; 1862(11-12): 194381, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31048027

RESUMO

Alternative splicing of mRNA precursors is a versatile mechanism of expanding proteomic diversity. The most striking example of this is the Drosophila melanogaster Down syndrome cell adhesion molecule (Dscam1) gene, which potentially encodes 38,016 distinct isoforms by mutually exclusive splicing. The genomic organization of Dscam1 is largely conserved across the pancrustaceans, although the number of splice isoforms varies from 2240 in the clam shrimp (Eulimnadia texana) to 121,104 in the whiteleg shrimp (Litopenaeus vannamei). RNA secondary structure plays a pivotal role in mutually exclusive splicing of Dscam1. Here, we review recent progress in the identification, evolution, and regulatory roles of RNA secondary structure in alternative splicing of Dscam1.


Assuntos
Moléculas de Adesão Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , RNA Mensageiro/química , Processamento Alternativo , Animais , Moléculas de Adesão Celular/química , Sequência Conservada , Crustáceos/genética , Proteínas de Drosophila/química , Drosophila melanogaster/química , Modelos Moleculares , Conformação de Ácido Nucleico
19.
Plant Signal Behav ; 14(8): 1616518, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31081714

RESUMO

The involvement of the long non-coding RNAs (lncRNAs) in small RNA (sRNA)-related pathways remains elusive. Taking advantage of the public sRNA sequencing data, we searched for RNA-dependent RNA polymerase 2 (RDR2)- and Dicer-like 3 (DCL3)-dependent sRNAs generated from the lncRNAs of Arabidopsis thaliana. First, 55,162 sRNAs were identified to be RDR2- and DCL3-dependent. These sRNAs were then mapped onto the lncRNAs. As a result, a total of 26,643 sRNAs found their loci on 3,834 lncRNAs, and 29,388 sRNAs found their loci on 4,174 reverse complementary (RC) sequences of the lncRNAs. To support the formation of the double-stranded precursors for sRNA generation, double-stranded RNA sequencing (dsRNA-seq) reads were mapped onto the sense and antisense strands of the lncRNAs with RDR2- and DCL3-dependent sRNA loci. As a result, 1,075 regions longer than 100 nt were identified to be covered by dsRNA-seq reads on 390 sense strands of the lncRNAs, and 1,352 regions were identified on 544 RC strands. Besides, 2,238 out of 3,211 dsRNA-seq read-covered sRNA loci were supported by degradome sequencing data on the sense strands of the lncRNAs. Interestingly, dozens of dsRNA-seq read-covered regions with AGO4-associated sRNA loci showed site-specific chromatin modification patterns. Thus, some of the lncRNAs were integrated into the RDR2- and DCL3-dependent sRNA biogenesis pathway. Moreover, our results indicated that the site-specific chromatin modifications mediated by the AGO4-associated sRNAs might play a regulatory role on the transcription activity of the lncRNA genes.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , RNA Longo não Codificante/genética , RNA de Plantas/genética , Transcriptoma/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo
20.
BMC Genomics ; 20(1): 133, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760208

RESUMO

BACKGROUND: MicroRNAs (miRNAs) constitute a well-known small RNA (sRNA) species with important regulatory roles. To date, several bioinformatics tools have been developed for large-scale prediction of miRNAs based on high-throughput sequencing data. However, some of these tools become invalid without reference genomes, while some tools cannot supply user-friendly outputs. Besides, most of the current tools focus on the importance of secondary structures and sRNA expression patterns for miRNA prediction, while they do not pay attention to miRNA processing for reliability check. RESULTS: Here, we reported a pipeline PmiRDiscVali for plant miRNA discovery and partial validation. This pipeline integrated the popular tool miRDeep-P for plant miRNA prediction, making PmiRDiscVali compatible for both reference-based and de novo predictions. To check the prediction reliability, we adopted the concept that the miRNA processing intermediates could be tracked by degradome sequencing (degradome-seq) during the development of PmiRDiscVali. A case study was performed by using the public sequencing data of Dendrobium officinale, in order to show the clear and concise presentation of the prediction results. CONCLUSION: Summarily, the integrated pipeline PmiRDiscVali, featured with degradome-seq data-based validation and vivid result presentation, should be useful for large-scale identification of plant miRNA candidates.


Assuntos
Biologia Computacional , MicroRNAs/genética , Plantas/genética , RNA de Plantas/genética , Dendrobium/genética , Sequenciamento de Nucleotídeos em Larga Escala , RNA Polimerase II/genética , Transcrição Gênica , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA