Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Chest ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38295949

RESUMO

BACKGROUND: Positive end-expiratory pressure (PEEP) can potentially modulate inspiratory effort (ΔPes), which is the major determinant of self-inflicted lung injury. RESEARCH QUESTION: Does high PEEP reduce ΔPes in patients with moderate-to-severe ARDS on assisted ventilation? STUDY DESIGN AND METHODS: Sixteen patients with Pao2/Fio2 ≤ 200 mm Hg and ΔPes ≥ 10 cm H2O underwent a randomized sequence of four ventilator settings: PEEP = 5 cm H2O or PEEP = 15 cm H2O + synchronous (pressure support ventilation [PSV]) or asynchronous (pressure-controlled intermittent mandatory ventilation [PC-IMV]) inspiratory assistance. ΔPes and respiratory system, lung, and chest wall mechanics were assessed with esophageal manometry and occlusions. PEEP-induced alveolar recruitment and overinflation, lung dynamic strain, and tidal volume distribution were assessed with electrical impedance tomography. RESULTS: ΔPes was not systematically different at high vs low PEEP (pressure support ventilation: median, 20 cm H2O; interquartile range (IQR), 15-24 cm H2O vs median, 15 cm H2O; IQR, 13-23 cm H2O; P = .24; pressure-controlled intermittent mandatory ventilation: median, 20; IQR, 18-23 vs median, 19; IQR, 17-25; P = .67, respectively). Similarly, respiratory system and transpulmonary driving pressures, tidal volume, lung/chest wall mechanics, and pendelluft extent were not different between study phases. High PEEP resulted in lower or higher ΔPes, respiratory system driving pressure, and transpulmonary driving pressure according to whether this increased or decreased respiratory system compliance (r = -0.85, P < .001; r = -0.75, P < .001; r = -0.80, P < .001, respectively). PEEP-induced changes in respiratory system compliance were driven by its lung component and were dependent on the extent of PEEP-induced alveolar overinflation (r = -0.66, P = .006). High PEEP caused variable recruitment and systematic redistribution of tidal volume toward dorsal lung regions, thereby reducing dynamic strain in ventral areas (pressure support ventilation: median, 0.49; IQR, 0.37-0.83 vs median, 0.96; IQR, 0.62-1.56; P = .003; pressure-controlled intermittent mandatory ventilation: median, 0.65; IQR, 0.42-1.31 vs median, 1.14; IQR, 0.79-1.52; P = .002). All results were consistent during synchronous and asynchronous inspiratory assistance. INTERPRETATION: The impact of high PEEP on ΔPes and lung stress is interindividually variable according to different effects on the respiratory system and lung compliance resulting from alveolar overinflation. High PEEP may help mitigate the risk of self-inflicted lung injury solely if it increases lung/respiratory system compliance. TRIAL REGISTRATION: ClinicalTrials.gov; No.: NCT04241874; URL: www. CLINICALTRIALS: gov.

2.
Curr Opin Crit Care ; 30(1): 20-27, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38085857

RESUMO

PURPOSE OF REVIEW: Determining the optimal positive end-expiratory pressure (PEEP) setting remains a central yet debated issue in the management of acute respiratory distress syndrome (ARDS).The 'best compliance' strategy set the PEEP to coincide with the peak respiratory system compliance (or 2 cmH 2 O higher) during a decremental PEEP trial, but evidence is conflicting. RECENT FINDINGS: The physiological rationale that best compliance is always representative of functional residual capacity and recruitment has raised serious concerns about its efficacy and safety, due to its association with increased 28-day all-cause mortality in a randomized clinical trial in ARDS patients.Moreover, compliance measurement was shown to underestimate the effects of overdistension, and neglect intra-tidal recruitment, airway closure, and the interaction between lung and chest wall mechanics, especially in obese patients. In response to these concerns, alternative approaches such as recruitment-to-inflation ratio, the nitrogen wash-in/wash-out technique, and electrical impedance tomography (EIT) are gaining attention to assess recruitment and overdistention more reliably and precisely. SUMMARY: The traditional 'best compliance' strategy for determining optimal PEEP settings in ARDS carries risks and overlooks some key physiological aspects. The advent of new technologies and methods presents more reliable strategies to assess recruitment and overdistention, facilitating personalized approaches to PEEP optimization.


Assuntos
Respiração com Pressão Positiva , Síndrome do Desconforto Respiratório , Humanos , Respiração com Pressão Positiva/métodos , Pulmão , Síndrome do Desconforto Respiratório/terapia , Volume de Ventilação Pulmonar , Tomografia Computadorizada por Raios X , Ensaios Clínicos Controlados Aleatórios como Assunto
3.
Am J Respir Crit Care Med ; 208(9): 1002-1004, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37586080
4.
Crit Care ; 27(1): 315, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592288

RESUMO

BACKGROUND: The effects of awake prone position on the breathing pattern of hypoxemic patients need to be better understood. We conducted a crossover trial to assess the physiological effects of awake prone position in patients with acute hypoxemic respiratory failure. METHODS: Fifteen patients with acute hypoxemic respiratory failure and PaO2/FiO2 < 200 mmHg underwent high-flow nasal oxygen for 1 h in supine position and 2 h in prone position, followed by a final 1-h supine phase. At the end of each study phase, the following parameters were measured: arterial blood gases, inspiratory effort (ΔPES), transpulmonary driving pressure (ΔPL), respiratory rate and esophageal pressure simplified pressure-time product per minute (sPTPES) by esophageal manometry, tidal volume (VT), end-expiratory lung impedance (EELI), lung compliance, airway resistance, time constant, dynamic strain (VT/EELI) and pendelluft extent through electrical impedance tomography. RESULTS: Compared to supine position, prone position increased PaO2/FiO2 (median [Interquartile range] 104 mmHg [76-129] vs. 74 [69-93], p < 0.001), reduced respiratory rate (24 breaths/min [22-26] vs. 27 [26-30], p = 0.05) and increased ΔPES (12 cmH2O [11-13] vs. 9 [8-12], p = 0.04) with similar sPTPES (131 [75-154] cmH2O s min-1 vs. 105 [81-129], p > 0.99) and ΔPL (9 [7-11] cmH2O vs. 8 [5-9], p = 0.17). Airway resistance and time constant were higher in prone vs. supine position (9 cmH2O s arbitrary units-3 [4-11] vs. 6 [4-9], p = 0.05; 0.53 s [0.32-61] vs. 0.40 [0.37-0.44], p = 0.03). Prone position increased EELI (3887 arbitrary units [3414-8547] vs. 1456 [959-2420], p = 0.002) and promoted VT distribution towards dorsal lung regions without affecting VT size and lung compliance: this generated lower dynamic strain (0.21 [0.16-0.24] vs. 0.38 [0.30-0.49], p = 0.004). The magnitude of pendelluft phenomenon was not different between study phases (55% [7-57] of VT in prone vs. 31% [14-55] in supine position, p > 0.99). CONCLUSIONS: Prone position improves oxygenation, increases EELI and promotes VT distribution towards dependent lung regions without affecting VT size, ΔPL, lung compliance and pendelluft magnitude. Prone position reduces respiratory rate and increases ΔPES because of positional increases in airway resistance and prolonged expiratory time. Because high ΔPES is the main mechanistic determinant of self-inflicted lung injury, caution may be needed in using awake prone position in patients exhibiting intense ΔPES. Clinical trail registeration: The study was registered on clinicaltrials.gov (NCT03095300) on March 29, 2017.


Assuntos
Insuficiência Respiratória , Vigília , Humanos , Decúbito Ventral , Respiração , Insuficiência Respiratória/terapia , Volume de Ventilação Pulmonar , Estudos Cross-Over
5.
J Intensive Care ; 11(1): 21, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208787

RESUMO

BACKGROUND: Long-term outcomes of patients treated with helmet noninvasive ventilation (NIV) are unknown: safety concerns regarding the risk of patient self-inflicted lung injury and delayed intubation exist when NIV is applied in hypoxemic patients. We assessed the 6-month outcome of patients who received helmet NIV or high-flow nasal oxygen for COVID-19 hypoxemic respiratory failure. METHODS: In this prespecified analysis of a randomized trial of helmet NIV versus high-flow nasal oxygen (HENIVOT), clinical status, physical performance (6-min-walking-test and 30-s chair stand test), respiratory function and quality of life (EuroQoL five dimensions five levels questionnaire, EuroQoL VAS, SF36 and Post-Traumatic Stress Disorder Checklist for the DSM) were evaluated 6 months after the enrollment. RESULTS: Among 80 patients who were alive, 71 (89%) completed the follow-up: 35 had received helmet NIV, 36 high-flow oxygen. There was no inter-group difference in any item concerning vital signs (N = 4), physical performance (N = 18), respiratory function (N = 27), quality of life (N = 21) and laboratory tests (N = 15). Arthralgia was significantly lower in the helmet group (16% vs. 55%, p = 0.002). Fifty-two percent of patients in helmet group vs. 63% of patients in high-flow group had diffusing capacity of the lungs for carbon monoxide < 80% of predicted (p = 0.44); 13% vs. 22% had forced vital capacity < 80% of predicted (p = 0.51). Both groups reported similar degree of pain (p = 0.81) and anxiety (p = 0.81) at the EQ-5D-5L test; the EQ-VAS score was similar in the two groups (p = 0.27). Compared to patients who successfully avoided invasive mechanical ventilation (54/71, 76%), intubated patients (17/71, 24%) had significantly worse pulmonary function (median diffusing capacity of the lungs for carbon monoxide 66% [Interquartile range: 47-77] of predicted vs. 80% [71-88], p = 0.005) and decreased quality of life (EQ-VAS: 70 [53-70] vs. 80 [70-83], p = 0.01). CONCLUSIONS: In patients with COVID-19 hypoxemic respiratory failure, treatment with helmet NIV or high-flow oxygen yielded similar quality of life and functional outcome at 6 months. The need for invasive mechanical ventilation was associated with worse outcomes. These data indicate that helmet NIV, as applied in the HENIVOT trial, can be safely used in hypoxemic patients. Trial registration Registered on clinicaltrials.gov NCT04502576 on August 6, 2020.

6.
J Clin Anesth ; 85: 111037, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36495775

RESUMO

Study objective To assess the effects of a protective ventilation strategy during Trendelenburg pneumoperitoneum surgery on postoperative oxygenation. DESIGNS: Parallel-group, randomized trial. SETTING: Operating room of a university hospital, Italy. PATIENTS: Morbidly obese patients undergoing Trendelenburg pneumoperitoneum gynaecological surgery. INTERVENTIONS: Participants were randomized to standard (SV: tidal volume = 10 ml/kg of predicted body weight, PEEP = 5 cmH2O) or protective (PV: tidal volume = 6 ml/kg of predicted body weight, PEEP = 10 cmH2O, recruitment maneuvers) ventilation during anesthesia. MEASUREMENTS: Primary outcome was PaO2/FiO2 one hour after extubation. Secondary outcomes included day-1 PaO2/FiO2, day-2 respiratory function and intraoperative respiratory/lung mechanics, assessed through esophageal manometry, end-expiratory lung volume (EELV) measurement and pressure-volume curves. MAIN RESULTS: Sixty patients were analyzed (31 in SV group, 29 in PV group). Median [IqR] tidal volume was 350 ml [300-360] in PV group and 525 [500-575] in SV group. Median PaO2/FiO2 one hour after extubation was 280 mmHg [246-364] in PV group vs. 298 [250-343] in SV group (p = 0.64). Day-1 PaO2/FiO2, day-2 forced vital capacity, FEV-1 and Tiffenau Index were not different between groups (all p > 0.10). Intraoperatively, 59% of patients showed complete airway closure during pneumoperitoneum, without difference between groups: median airway opening pressure was 17 cmH2O. In PV group, airway and transpulmonary driving pressure were lower (12 ± 5 cmH2O vs. 17 ± 7, p < 0.001; 9 ± 4 vs. 13 ± 7, p < 0.001), PaCO2 and respiratory rate were higher (48 ± 8 mmHg vs. 42 ± 12, p < 0.001; 23 ± 5 breaths/min vs. 16 ± 4, p < 0.001). Intraoperative EELV was similar between PV and SV group (1193 ± 258 ml vs. 1207 ± 368, p = 0.80); ratio of tidal volume to EELV was lower in PV group (0.45 ± 0.12 vs. 0.32 ± 0.09, p < 0.001). CONCLUSIONS: In obese patients undergoing Trendelenburg pneumoperitoneum surgery, PV did not improve postoperative oxygenation nor day-2 respiratory function. PV was associated with intraoperative respiratory mechanics indicating less injurious ventilation. The high prevalence of complete airway closure may have affected study results. TRIAL REGISTRATION: Prospectively registered on http://clinicaltrials.govNCT03157479 on May 17th, 2017.


Assuntos
Obesidade Mórbida , Pneumoperitônio , Humanos , Respiração com Pressão Positiva/métodos , Pneumoperitônio/etiologia , Respiração Artificial , Pulmão , Volume de Ventilação Pulmonar
7.
Am J Respir Crit Care Med ; 207(10): 1310-1323, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36378814

RESUMO

Rationale: The respective effects of positive end-expiratory pressure (PEEP) and pressure support delivered through the helmet interface in patients with hypoxemia need to be better understood. Objectives: To assess the respective effects of helmet pressure support (noninvasive ventilation [NIV]) and continuous positive airway pressure (CPAP) compared with high-flow nasal oxygen (HFNO) on effort to breathe, lung inflation, and gas exchange in patients with hypoxemia (PaO2/FiO2 ⩽ 200). Methods: Fifteen patients underwent 1-hour phases (constant FiO2) of HFNO (60 L/min), helmet NIV (PEEP = 14 cm H2O, pressure support = 12 cm H2O), and CPAP (PEEP = 14 cm H2O) in randomized sequence. Measurements and Main Results: Inspiratory esophageal (ΔPES) and transpulmonary pressure (ΔPL) swings were used as surrogates for inspiratory effort and lung distension, respectively. Tidal Volume (Vt) and end-expiratory lung volume were assessed with electrical impedance tomography. ΔPES was lower during NIV versus CPAP and HFNO (median [interquartile range], 5 [3-9] cm H2O vs. 13 [10-19] cm H2O vs. 10 [8-13] cm H2O; P = 0.001 and P = 0.01). ΔPL was not statistically different between treatments. PaO2/FiO2 ratio was significantly higher during NIV and CPAP versus HFNO (166 [136-215] and 175 [158-281] vs. 120 [107-149]; P = 0.002 and P = 0.001). NIV and CPAP similarly increased Vt versus HFNO (mean change, 70% [95% confidence interval (CI), 17-122%], P = 0.02; 93% [95% CI, 30-155%], P = 0.002) and end-expiratory lung volume (mean change, 198% [95% CI, 67-330%], P = 0.001; 263% [95% CI, 121-407%], P = 0.001), mostly due to increased aeration/ventilation in dorsal lung regions. During HFNO, 14 of 15 patients had pendelluft involving >10% of Vt; pendelluft was mitigated by CPAP and further by NIV. Conclusions: Compared with HFNO, helmet NIV, but not CPAP, reduced ΔPES. CPAP and NIV similarly increased oxygenation, end-expiratory lung volume, and Vt, without affecting ΔPL. NIV, and to a lesser extent CPAP, mitigated pendelluft. Clinical trial registered with clinicaltrials.gov (NCT04241861).


Assuntos
Ventilação não Invasiva , Insuficiência Respiratória , Humanos , Pressão Positiva Contínua nas Vias Aéreas , Insuficiência Respiratória/terapia , Pulmão , Ventilação não Invasiva/métodos , Hipóxia/terapia
8.
Ann Intensive Care ; 12(1): 94, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241926

RESUMO

INTRODUCTION: Helmet noninvasive support may provide advantages over other noninvasive oxygenation strategies in the management of acute hypoxemic respiratory failure. In this narrative review based on a systematic search of the literature, we summarize the rationale, mechanism of action and technicalities for helmet support in hypoxemic patients. MAIN RESULTS: In hypoxemic patients, helmet can facilitate noninvasive application of continuous positive-airway pressure or pressure-support ventilation via a hood interface that seals at the neck and is secured by straps under the arms. Helmet use requires specific settings. Continuous positive-airway pressure is delivered through a high-flow generator or a Venturi system connected to the inspiratory port of the interface, and a positive end-expiratory pressure valve place at the expiratory port of the helmet;  alternatively, pressure-support ventilation is delivered by connecting the helmet to a mechanical ventilator through a bi-tube circuit. The helmet interface allows continuous treatments with high positive end-expiratory pressure with good patient comfort. Preliminary data suggest that helmet noninvasive ventilation (NIV) may provide physiological benefits compared to other noninvasive oxygenation strategies (conventional oxygen, facemask NIV, high-flow nasal oxygen) in non-hypercapnic patients with moderate-to-severe hypoxemia (PaO2/FiO2 ≤ 200 mmHg), possibly because higher positive end-expiratory pressure (10-15 cmH2O) can be applied for prolonged periods with good tolerability. This improves oxygenation, limits ventilator inhomogeneities, and may attenuate the potential harm of lung and diaphragm injury caused by vigorous inspiratory effort. The potential superiority of helmet support for reducing the risk of intubation has been hypothesized in small, pilot randomized trials and in a network metanalysis. CONCLUSIONS: Helmet noninvasive support represents a promising tool for the initial management of patients with severe hypoxemic respiratory failure. Currently, the lack of confidence with this and technique and the absence of conclusive data regarding its efficacy render helmet use limited to specific settings, with expert and trained personnel. As per other noninvasive oxygenation strategies, careful clinical and physiological monitoring during the treatment is essential to early identify treatment failure and avoid delays in intubation.

10.
Trials ; 23(1): 63, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35057852

RESUMO

BACKGROUND: In acute respiratory distress syndrome (ARDS), response to positive end-expiratory pressure (PEEP) is variable according to different degrees of lung recruitability. The search for a tool to individualize PEEP based on patients' individual response is warranted. End-expiratory lung volume (EELV) assessment by nitrogen washing-washout aids bedside estimation of PEEP-induced alveolar recruitment and may therefore help titrate PEEP on patient's individual recruitability. We designed a randomized trial to test whether an individualized PEEP setting protocol driven by EELV measurement may improve a composite clinical outcome in patients with moderate-to-severe ARDS (IPERPEEP trial). METHODS: IPERPEEP is an open-label, multicenter, randomized trial that will be conducted in 10 intensive care units in Italy and will enroll 132 ARDS patients showing PaO2/FiO2 ratio ≤ 150 mmHg within 24 h from endotracheal intubation while on mechanical ventilation with PEEP 5 cmH2O. To standardize lung volumes at study initiation, all patients will undergo mechanical ventilation with tidal volume of 6 ml/kg of predicted body weight and PEEP set to obtain a plateau pressure within 28 and 30 cmH2O for 30 min (EXPRESS PEEP). Afterwards, a 5-step decremental PEEP trial will be conducted (EXPRESS PEEP to PEEP 5 cmH2O), and EELV will be measured at each step. Recruitment-to-inflation ratio will be calculated for each PEEP range from EELV difference. Patients will be then randomized to receive mechanical ventilation with PEEP set according to the optimal recruitment observed in the PEEP trial (IPERPEEP arm) trial or to achieve a plateau pressure of 28-30 cmH2O (control arm, EXPRESS strategy). In both groups, tidal volume size, use of prone positioning and neuromuscular blocking agents, and weaning from PEEP and from mechanical ventilation will be standardized. The primary endpoint of the study is a composite clinical outcome incorporating in-ICU mortality, 60-day ventilator-free days, and serum interleukin-6 concentration over the course of the initial 72 h of treatment. DISCUSSION: The IPERPEEP study is a randomized trial powered to elucidate whether an individualized PEEP setting protocol based on bedside assessment of lung recruitability can improve a composite clinical outcome during moderate-to-severe ARDS. TRIAL REGISTRATION: ClinicalTrials.gov NCT04012073 . Registered 9 July 2019.


Assuntos
Respiração com Pressão Positiva , Síndrome do Desconforto Respiratório , Humanos , Pulmão , Medidas de Volume Pulmonar , Estudos Multicêntricos como Assunto , Ensaios Clínicos Controlados Aleatórios como Assunto , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/terapia , Volume de Ventilação Pulmonar
12.
Curr Opin Crit Care ; 28(1): 25-50, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34694240

RESUMO

PURPOSE OF REVIEW: Noninvasive respiratory support has been widely applied during the COVID-19 pandemic. We provide a narrative review on the benefits and possible harms of noninvasive respiratory support for COVID-19 respiratory failure. RECENT FINDINGS: Maintenance of spontaneous breathing by means of noninvasive respiratory support in hypoxemic patients with vigorous spontaneous effort carries the risk of patient self-induced lung injury: the benefit of averting intubation in successful patients should be balanced with the harms of a worse outcome in patients who are intubated after failing a trial of noninvasive support.The risk of noninvasive treatment failure is greater in patients with the most severe oxygenation impairment (PaO2/FiO2 < 200 mmHg).High-flow nasal oxygen (HFNO) is the most widely applied intervention in COVID-19 patients with hypoxemic respiratory failure. Also, noninvasive ventilation (NIV) and continuous positive airway pressure delivered with different interfaces have been used with variable success rates. A single randomized trial showed lower need for intubation in patients receiving helmet NIV with specific settings, compared to HFNO alone.Prone positioning is recommended for moderate-to-severe acute respiratory distress syndrome patients on invasive ventilation. Awake prone position has been frequently applied in COVID-19 patients: one randomized trial showed improved oxygenation and lower intubation rate in patients receiving 6-h sessions of awake prone positioning, as compared to conventional management. SUMMARY: Noninvasive respiratory support and awake prone position are tools possibly capable of averting endotracheal intubation in COVID-19 patients; carefully monitoring during any treatment is warranted to avoid delays in endotracheal intubation, especially in patients with PaO2/FiO2 < 200 mmHg.


Assuntos
COVID-19 , Ventilação não Invasiva , Síndrome do Desconforto Respiratório , Insuficiência Respiratória , Humanos , Pandemias , Síndrome do Desconforto Respiratório/terapia , Insuficiência Respiratória/etiologia , Insuficiência Respiratória/terapia , SARS-CoV-2
14.
JAMA ; 325(17): 1731-1743, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33764378

RESUMO

Importance: High-flow nasal oxygen is recommended as initial treatment for acute hypoxemic respiratory failure and is widely applied in patients with COVID-19. Objective: To assess whether helmet noninvasive ventilation can increase the days free of respiratory support in patients with COVID-19 compared with high-flow nasal oxygen alone. Design, Setting, and Participants: Multicenter randomized clinical trial in 4 intensive care units (ICUs) in Italy between October and December 2020, end of follow-up February 11, 2021, including 109 patients with COVID-19 and moderate to severe hypoxemic respiratory failure (ratio of partial pressure of arterial oxygen to fraction of inspired oxygen ≤200). Interventions: Participants were randomly assigned to receive continuous treatment with helmet noninvasive ventilation (positive end-expiratory pressure, 10-12 cm H2O; pressure support, 10-12 cm H2O) for at least 48 hours eventually followed by high-flow nasal oxygen (n = 54) or high-flow oxygen alone (60 L/min) (n = 55). Main Outcomes and Measures: The primary outcome was the number of days free of respiratory support within 28 days after enrollment. Secondary outcomes included the proportion of patients who required endotracheal intubation within 28 days from study enrollment, the number of days free of invasive mechanical ventilation at day 28, the number of days free of invasive mechanical ventilation at day 60, in-ICU mortality, in-hospital mortality, 28-day mortality, 60-day mortality, ICU length of stay, and hospital length of stay. Results: Among 110 patients who were randomized, 109 (99%) completed the trial (median age, 65 years [interquartile range {IQR}, 55-70]; 21 women [19%]). The median days free of respiratory support within 28 days after randomization were 20 (IQR, 0-25) in the helmet group and 18 (IQR, 0-22) in the high-flow nasal oxygen group, a difference that was not statistically significant (mean difference, 2 days [95% CI, -2 to 6]; P = .26). Of 9 prespecified secondary outcomes reported, 7 showed no significant difference. The rate of endotracheal intubation was significantly lower in the helmet group than in the high-flow nasal oxygen group (30% vs 51%; difference, -21% [95% CI, -38% to -3%]; P = .03). The median number of days free of invasive mechanical ventilation within 28 days was significantly higher in the helmet group than in the high-flow nasal oxygen group (28 [IQR, 13-28] vs 25 [IQR 4-28]; mean difference, 3 days [95% CI, 0-7]; P = .04). The rate of in-hospital mortality was 24% in the helmet group and 25% in the high-flow nasal oxygen group (absolute difference, -1% [95% CI, -17% to 15%]; P > .99). Conclusions and Relevance: Among patients with COVID-19 and moderate to severe hypoxemia, treatment with helmet noninvasive ventilation, compared with high-flow nasal oxygen, resulted in no significant difference in the number of days free of respiratory support within 28 days. Further research is warranted to determine effects on other outcomes, including the need for endotracheal intubation. Trial Registration: ClinicalTrials.gov Identifier: NCT04502576.


Assuntos
COVID-19/complicações , Intubação Intratraqueal/estatística & dados numéricos , Ventilação não Invasiva/instrumentação , Oxigenoterapia/métodos , Insuficiência Respiratória/terapia , Idoso , COVID-19/mortalidade , COVID-19/terapia , Feminino , Mortalidade Hospitalar , Humanos , Hipóxia/etiologia , Masculino , Pessoa de Meia-Idade , Ventilação não Invasiva/métodos , Insuficiência Respiratória/etiologia , Falha de Tratamento
16.
Crit Care ; 24(1): 529, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859264

RESUMO

BACKGROUND: Whether respiratory physiology of COVID-19-induced respiratory failure is different from acute respiratory distress syndrome (ARDS) of other etiologies is unclear. We conducted a single-center study to describe respiratory mechanics and response to positive end-expiratory pressure (PEEP) in COVID-19 ARDS and to compare COVID-19 patients to matched-control subjects with ARDS from other causes. METHODS: Thirty consecutive COVID-19 patients admitted to an intensive care unit in Rome, Italy, and fulfilling moderate-to-severe ARDS criteria were enrolled within 24 h from endotracheal intubation. Gas exchange, respiratory mechanics, and ventilatory ratio were measured at PEEP of 15 and 5 cmH2O. A single-breath derecruitment maneuver was performed to assess recruitability. After 1:1 matching based on PaO2/FiO2, FiO2, PEEP, and tidal volume, COVID-19 patients were compared to subjects affected by ARDS of other etiologies who underwent the same procedures in a previous study. RESULTS: Thirty COVID-19 patients were successfully matched with 30 ARDS from other etiologies. At low PEEP, median [25th-75th percentiles] PaO2/FiO2 in the two groups was 119 mmHg [101-142] and 116 mmHg [87-154]. Average compliance (41 ml/cmH2O [32-52] vs. 36 ml/cmH2O [27-42], p = 0.045) and ventilatory ratio (2.1 [1.7-2.3] vs. 1.6 [1.4-2.1], p = 0.032) were slightly higher in COVID-19 patients. Inter-individual variability (ratio of standard deviation to mean) of compliance was 36% in COVID-19 patients and 31% in other ARDS. In COVID-19 patients, PaO2/FiO2 was linearly correlated with respiratory system compliance (r = 0.52 p = 0.003). High PEEP improved PaO2/FiO2 in both cohorts, but more remarkably in COVID-19 patients (p = 0.005). Recruitability was not different between cohorts (p = 0.39) and was highly inter-individually variable (72% in COVID-19 patients and 64% in ARDS from other causes). In COVID-19 patients, recruitability was independent from oxygenation and respiratory mechanics changes due to PEEP. CONCLUSIONS: Early after establishment of mechanical ventilation, COVID-19 patients follow ARDS physiology, with compliance reduction related to the degree of hypoxemia, and inter-individually variable respiratory mechanics and recruitability. Physiological differences between ARDS from COVID-19 and other causes appear small.


Assuntos
Infecções por Coronavirus/fisiopatologia , Pneumonia Viral/fisiopatologia , Síndrome do Desconforto Respiratório/fisiopatologia , Idoso , Betacoronavirus , COVID-19 , Infecções por Coronavirus/terapia , Feminino , Humanos , Unidades de Terapia Intensiva , Itália , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/terapia , Respiração com Pressão Positiva , Síndrome do Desconforto Respiratório/terapia , Testes de Função Respiratória , Mecânica Respiratória/fisiologia , SARS-CoV-2
18.
Am J Respir Crit Care Med ; 201(3): 303-312, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31687831

RESUMO

Rationale: High-flow nasal cannula (HFNC) and helmet noninvasive ventilation (NIV) are used for the management of acute hypoxemic respiratory failure.Objectives: Physiological comparison of HFNC and helmet NIV in patients with hypoxemia.Methods: Fifteen patients with hypoxemia with PaO2/FiO2 < 200 mm Hg received helmet NIV (positive end-expiratory pressure ≥ 10 cm H2O, pressure support = 10-15 cm H2O) and HFNC (50 L/min) in randomized crossover order. Arterial blood gases, dyspnea, and comfort were recorded. Inspiratory effort was estimated by esophageal pressure (Pes) swings. Pes-simplified pressure-time product and transpulmonary pressure swings were measured.Measurements and Main Results: As compared with HFNC, helmet NIV increased PaO2/FiO2 (median [interquartile range]: 255 mm Hg [140-299] vs. 138 [101-172]; P = 0.001) and lowered inspiratory effort (7 cm H2O [4-11] vs. 15 [8-19]; P = 0.001) in all patients. Inspiratory effort reduction by NIV was linearly related to inspiratory effort during HFNC (r = 0.84; P < 0.001). Helmet NIV reduced respiratory rate (24 breaths/min [23-31] vs. 29 [26-32]; P = 0.027), Pes-simplified pressure-time product (93 cm H2O ⋅ s ⋅ min-1 [43-138] vs. 200 [168-335]; P = 0.001), and dyspnea (visual analog scale 3 [2-5] vs. 8 [6-9]; P = 0.002), without affecting PaCO2 (P = 0.80) and comfort (P = 0.50). In the overall cohort, transpulmonary pressure swings were not different between treatments (NIV = 18 cm H2O [14-21] vs. HFNC = 15 [8-19]; P = 0.11), but patients exhibiting lower inspiratory effort on HFNC experienced increases in transpulmonary pressure swings with helmet NIV. Higher transpulmonary pressure swings during NIV were associated with subsequent need for intubation.Conclusions: As compared with HFNC in hypoxemic respiratory failure, helmet NIV improves oxygenation, reduces dyspnea, inspiratory effort, and simplified pressure-time product, with similar transpulmonary pressure swings, PaCO2, and comfort.


Assuntos
Hipóxia/fisiopatologia , Hipóxia/terapia , Ventilação não Invasiva/instrumentação , Insuficiência Respiratória/fisiopatologia , Insuficiência Respiratória/terapia , Doença Aguda , Idoso , Cânula , Estudos Cross-Over , Feminino , Humanos , Hipóxia/complicações , Masculino , Pessoa de Meia-Idade , Insuficiência Respiratória/complicações
19.
Minerva Anestesiol ; 85(9): 1014-1023, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30871304

RESUMO

The role of spontaneous breathing among patients with acute hypoxemic respiratory failure and ARDS is debated: while avoidance of intubation with noninvasive ventilation (NIV) or high-flow nasal cannula improves clinical outcome, treatment failure worsens mortality. Recent data suggest patient self-inflicted lung injury (P-SILI) as a possible mechanism aggravating lung damage in these patients. P-SILI is generated by intense inspiratory effort yielding: (A) swings in transpulmonary pressure (i.e. lung stress) causing the inflation of big volumes in an aerated compartment markedly reduced by the disease-induced aeration loss; (B) abnormal increases in transvascular pressure, favouring negative-pressure pulmonary edema; (C) an intra-tidal shift of gas between different lung zones, generated by different transmission of muscular force (i.e. pendelluft); (D) diaphragm injury. Experimental data suggest that not all subjects are exposed to the development of P-SILI: patients with a PaO2/FiO2 ratio below 200 mmHg may represent the most at risk population. For them, current evidence indicates that high-flow nasal cannula alone may be superior to intermittent sessions of low-PEEP NIV delivered through face mask, while continuous high-PEEP helmet NIV likely promotes treatment success and may mitigate lung injury. The optimal initial noninvasive treatment of hypoxemic respiratory failure/ARDS remains however uncertain; high-flow nasal cannula and high-PEEP helmet NIV are promising tools to enhance success of the approach, but the best balance between these techniques has yet to be identified. During noninvasive support, careful clinical monitoring remains mandatory for prompt detection of treatment failure, in order not to delay intubation and protective ventilation.


Assuntos
Lesão Pulmonar Aguda/etiologia , Hipóxia/terapia , Ventilação não Invasiva , Oxigenoterapia/métodos , Respiração , Síndrome do Desconforto Respiratório/terapia , Comportamento Autodestrutivo , Lesão Pulmonar Aguda/fisiopatologia , Lesão Pulmonar Aguda/prevenção & controle , Cânula , Humanos , Hipóxia/etiologia , Hipóxia/fisiopatologia , Monitorização Fisiológica , Ventilação não Invasiva/instrumentação , Ventilação não Invasiva/métodos , Oxigenoterapia/instrumentação , Respiração com Pressão Positiva/instrumentação , Respiração com Pressão Positiva/métodos , Edema Pulmonar/etiologia , Edema Pulmonar/fisiopatologia , Síndrome do Desconforto Respiratório/fisiopatologia , Insuficiência Respiratória/etiologia , Insuficiência Respiratória/terapia , Mecânica Respiratória , Falha de Tratamento , Procedimentos Desnecessários , Lesão Pulmonar Induzida por Ventilação Mecânica , Trabalho Respiratório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA