Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Pollut ; 349: 123986, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38636833

RESUMO

The spread of biogenic matrices for agricultural purposes can lead to plastic input into soils, raising a question on possible consequences for the environment. Nonetheless, the current knowledge concerning the presence of plastics in biogenic matrices is very poor. Therefore, the objective of the present study was a quali-quantitative characterization of plastics in different matrices reused in agriculture as manures, digestate, compost and sewage sludges. Plastics were quantified and characterized using a Fourier Transform Infrared Spectroscopy coupled with an optical microscope (µFT-IR) in Attenuated Total Reflectance mode. Our study showed the presence of plastics in all the investigated samples, albeit with differences in the content among the matrices. We measured a lower presence in animal matrices (0.06-0.08 plastics/g wet weight w.w.), while 3.14-5.07 plastics/g w.w. were measured in sewage sludges. Fibres were the prevalent shape and plastic debris were mostly in the micrometric size. The most abundant polymers were polyester (PEST), polypropylene (PP) and polyethylene (PE). The worst case was observed in the compost sample, where 986 plastics/g w.w. were detected. The majority of these plastics were compostable and biodegradable, with only 8% consisting of fragments of PEST and PE. Our results highlighted the need to thoroughly evaluate the contribution of reused matrices in agriculture to the plastic accumulation in the soil system.


Assuntos
Agricultura , Plásticos , Esgotos , Poluentes do Solo , Solo , Plásticos/análise , Solo/química , Poluentes do Solo/análise , Esgotos/química , Compostagem/métodos , Esterco/análise , Monitoramento Ambiental/métodos , Reciclagem , Animais
2.
MethodsX ; 12: 102599, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38379723

RESUMO

Sewage sludge (biosolids) management represents a worldwide issue. Due to its valuable properties, approximately one half of the EU production is recovered in agriculture. Nevertheless, growing attention is given to potential negative effects deriving from the presence of harmful pollutants. It is recognized that a (even very detailed) chemical characterization is not able to predict ecotoxicity of a mixture. However, this can be directly measured by bioassays. Actually, the choice of the most suitable tests is still under debate. This paper presents a multilevel characterization protocol of sewage sludge and other organic residues, based on bioassays and chemical-physical-microbiological analyses. The detailed description of the experimental procedure includes all the involved steps: the criteria for selecting the organic matrices to be tested and compared; the sample pre-treatment required before the analyses execution; the chemical, physical and microbiological characterisation; the bioassays, grouped in three classes (baseline toxicity; specific mode of action; reactive mode of action); data processing. The novelty of this paper lies in the integrated use of advanced tools, and is based on three pillars:•the direct ecosafety assessment of the matrices to be reused.•the adoption of innovative bioassays and analytical procedures.•the original criteria for data normalization and processing.

3.
Sci Total Environ ; 851(Pt 1): 158071, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988629

RESUMO

The literature is currently lacking effect-based monitoring studies targeted at evaluating the performance of full-scale membrane bioreactor plants. In this research, a monitoring campaign was performed at a full-scale wastewater treatment facility with two parallel lines (traditional activated sludge and membrane bioreactor). Beside the standard parameters (COD, nitrogen, phosphorus, and metals), 6 polynuclear aromatic hydrocarbons, 29 insecticides, 2 herbicides, and 3 endocrine disrupting compounds were measured. A multi-tiered battery of bioassays complemented the investigation, targeting different toxic modes of action and employing various biological systems (uni/multicellular, prokaryotes/eukaryotes, trophic level occupation). A traffic light scoring approach was proposed to quickly visualize the impact of treatment on overall toxicity that occurred after the exposure to raw and concentrated wastewater. Analysis of the effluents of the CAS and MBR lines show very good performance of the two systems for removal of organic micropollutants and metals. The most noticeable differences between CAS and MBR occurred in the concentration of suspended solids; chemical analyses did not show major differences. On the other hand, bioassays demonstrated better performance for the MBR. Both treatment lines complied with the Italian law's "ecotoxicity standard for effluent discharge in surface water". Yet, residual biological activity was still detected, demonstrating the adequacy and sensitivity of the toxicological tools, which, by their inherent nature, allow the overall effects of complex mixtures to be taken into account.


Assuntos
Herbicidas , Inseticidas , Hidrocarbonetos Policíclicos Aromáticos , Reatores Biológicos , Membranas Artificiais , Nitrogênio , Fósforo , Esgotos/química , Eliminação de Resíduos Líquidos , Águas Residuárias/toxicidade , Água
4.
Artigo em Inglês | MEDLINE | ID: mdl-34202094

RESUMO

The assessment of the actual impact of discharged wastewater on the whole ecosystem and, in turn, on human health requires the execution of bioassays. In effect, based on the chemical characterization alone, the synergistic/antagonistic effect of mixtures of pollutants is hardly estimable. The aim of this work was to evaluate the applicability of a battery of bioassays and to suggest a smart procedure for results representation. Two real wastewater treatment plants were submitted to analytical campaigns. Several baseline toxicity assays were conducted, together with tests for the determination of endocrine activity, genetic toxicity and carcinogenicity of wastewater. A "traffic light" model was adopted for an easy-to-understand visualization of the results. Although the legal prescriptions of chemical parameters are fully complied with, bioassays show that a certain biological activity still residues in the treated effluents. Moreover, influent and effluent responses are not always appreciably different. Some tests employing human cells were revealed to be only partially adequate for environmental applications. An interesting and helpful development of the present approach would consist in the estimation of biological equivalents of toxicity, as shown for the estrogenic compound 17-ß-estradiol.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Bioensaio , Ecossistema , Monitoramento Ambiental , Estrogênios/análise , Humanos , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA