RESUMO
B-cell lymphoma 6 (BCL6) is a transcriptional repressor and oncogenic driver of diffuse large B-cell lymphoma (DLBCL). Here, we report the optimization of our previously reported tricyclic quinolinone series for the inhibition of BCL6. We sought to improve the cellular potency and in vivo exposure of the non-degrading isomer, CCT373567, of our recently published degrader, CCT373566. The major limitation of our inhibitors was their high topological polar surface areas (TPSA), leading to increased efflux ratios. Reducing the molecular weight allowed us to remove polarity and decrease TPSA without considerably reducing solubility. Careful optimization of these properties, as guided by pharmacokinetic studies, led to the discovery of CCT374705, a potent inhibitor of BCL6 with a good in vivo profile. Modest in vivo efficacy was achieved in a lymphoma xenograft mouse model after oral dosing.
Assuntos
Linfoma Difuso de Grandes Células B , Quinolonas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Linfoma Difuso de Grandes Células B/patologia , Proteínas Proto-Oncogênicas c-bcl-6/química , Fatores de TranscriçãoRESUMO
To identify new chemical series with enhanced binding affinity to the BTB domain of B-cell lymphoma 6 protein, we targeted a subpocket adjacent to Val18. With no opportunities for strong polar interactions, we focused on attaining close shape complementarity by ring fusion onto our quinolinone lead series. Following exploration of different sized rings, we identified a conformationally restricted core which optimally filled the available space, leading to potent BCL6 inhibitors. Through X-ray structure-guided design, combined with efficient synthetic chemistry to make the resulting novel core structures, a >300-fold improvement in activity was obtained by the addition of seven heavy atoms.
Assuntos
Domínio BTB-POZ , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-6RESUMO
The transcriptional repressor BCL6 is an oncogenic driver found to be deregulated in lymphoid malignancies. Herein, we report the optimization of our previously reported benzimidazolone molecular glue-type degrader CCT369260 to CCT373566, a highly potent probe suitable for sustained depletion of BCL6 in vivo. We observed a sharp degradation SAR, where subtle structural changes conveyed the ability to induce degradation of BCL6. CCT373566 showed modest in vivo efficacy in a lymphoma xenograft mouse model following oral dosing.
Assuntos
Carcinogênese , Regulação Neoplásica da Expressão Gênica , Animais , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-bcl-6/metabolismoRESUMO
BACKGROUND: Integration of medicinal chemistry data from numerous public resources is an increasingly important part of academic drug discovery and translational research because it can bring a wealth of important knowledge related to compounds in one place. However, different data sources can report the same or related compounds in various forms (e.g., tautomers, racemates, etc.), thus highlighting the need of organising related compounds in hierarchies that alert the user on important bioactivity data that may be relevant. To generate these compound hierarchies, we have developed and implemented canSARchem, a new compound registration and standardization pipeline as part of the canSAR public knowledgebase. canSARchem builds on previously developed ChEMBL and PubChem pipelines and is developed using KNIME. We describe the pipeline which we make publicly available, and we provide examples on the strengths and limitations of the use of hierarchies for bioactivity data exploration. Finally, we identify canonicalization enrichment in FDA-approved drugs, illustrating the benefits of our approach. RESULTS: We created a chemical registration and standardization pipeline in KNIME and made it freely available to the research community. The pipeline consists of five steps to register the compounds and create the compounds' hierarchy: 1. Structure checker, 2. Standardization, 3. Generation of canonical tautomers and representative structures, 4. Salt strip, and 5. Generation of abstract structure to generate the compound hierarchy. Unlike ChEMBL's RDKit pipeline, we carry out compound canonicalization ahead of getting the parent structure, similar to PubChem's OpenEye pipeline. canSARchem has a lower rejection rate compared to both PubChem and ChEMBL. We use our pipeline to assess the impact of grouping the compounds in hierarchies for bioactivity data exploration. We find that FDA-approved drugs show statistically significant sensitivity to canonicalization compared to the majority of bioactive compounds which demonstrates the importance of this step. CONCLUSIONS: We use canSARchem to standardize all the compounds uploaded in canSAR (> 3 million) enabling efficient data integration and the rapid identification of alternative compound forms with useful bioactivity data. Comparison with PubChem and ChEMBL pipelines evidenced comparable performances in compound standardization, but only PubChem and canSAR canonicalize tautomers and canSAR has a slightly lower rejection rate. Our results highlight the importance of compound hierarchies for bioactivity data exploration. We make canSARchem available under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0) at https://gitlab.icr.ac.uk/cansar-public/compound-registration-pipeline .
RESUMO
We describe the optimization of modestly active starting points to potent inhibitors of BCL6 by growing into a subpocket, which was occupied by a network of five stably bound water molecules. Identifying potent inhibitors required not only forming new interactions in the subpocket but also perturbing the water network in a productive, potency-increasing fashion while controlling the physicochemical properties. We achieved this goal in a sequential manner by systematically probing the pocket and the water network, ultimately achieving a 100-fold improvement of activity. The most potent compounds displaced three of the five initial water molecules and formed hydrogen bonds with the remaining two. Compound 25 showed a promising profile for a lead compound with submicromolar inhibition of BCL6 in cells and satisfactory pharmacokinetic (PK) properties. Our work highlights the importance of finding productive ways to perturb existing water networks when growing into solvent-filled protein pockets.
Assuntos
Antineoplásicos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-6/antagonistas & inibidores , Antineoplásicos/química , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Ligação de Hidrogênio , Solubilidade , Relação Estrutura-AtividadeRESUMO
The PARP enzyme and scaffolding protein tankyrase (TNKS, TNKS2) uses its ankyrin repeat clusters (ARCs) to bind a wide range of proteins and thereby controls diverse cellular functions. A number of these are implicated in cancer-relevant processes, including Wnt/ß-catenin signalling, Hippo signalling and telomere maintenance. The ARCs recognise a conserved tankyrase-binding peptide motif (TBM). All currently available tankyrase inhibitors target the catalytic domain and inhibit tankyrase's poly(ADP-ribosyl)ation function. However, there is emerging evidence that catalysis-independent "scaffolding" mechanisms contribute to tankyrase function. Here we report a fragment-based screening programme against tankyrase ARC domains, using a combination of biophysical assays, including differential scanning fluorimetry (DSF) and nuclear magnetic resonance (NMR) spectroscopy. We identify fragment molecules that will serve as starting points for the development of tankyrase substrate binding antagonists. Such compounds will enable probing the scaffolding functions of tankyrase, and may, in the future, provide potential alternative therapeutic approaches to inhibiting tankyrase activity in cancer and other conditions.
Assuntos
Repetição de Anquirina , Fluorometria/métodos , Espectroscopia de Ressonância Magnética/métodos , Tanquirases/química , Arginina/química , Sítios de Ligação , Domínio Catalítico , Simulação por Computador , Escherichia coli/enzimologia , Humanos , Cinética , Ligantes , Mutação , Peptídeos/química , Ligação Proteica , Via de Sinalização WntRESUMO
Several caspases have been implicated in the pathogenesis of Huntington's disease (HD); however, existing caspase inhibitors lack the selectivity required to investigate the specific involvement of individual caspases in the neuronal cell death associated with HD. In order to explore the potential role played by caspase-2, the potent but non-selective canonical Ac-VDVAD-CHO caspase-2 inhibitor 1 was rationally modified at the P(2) residue in an attempt to decrease its activity against caspase-3. With the aid of structural information on the caspase-2, and -3 active sites and molecular modeling, a 3-(S)-substituted-l-proline along with four additional scaffold variants were selected as P(2) elements for their predicted ability to clash sterically with a residue of the caspase-3 S(2) pocket. These elements were then incorporated by solid-phase synthesis into pentapeptide aldehydes 33a-v. Proline-based compound 33h bearing a bulky 3-(S)-substituent displayed advantageous characteristics in biochemical and cellular assays with 20- to 60-fold increased selectivity for caspase-2 and â¼200-fold decreased caspase-3 potency compared to the reference inhibitor 1. Further optimization of this prototype compound may lead to the discovery of valuable pharmacological tools for the study of caspase-2 mediated cell death, particularly as it relates to HD.
Assuntos
Inibidores de Caspase , Inibidores de Cisteína Proteinase/síntese química , Desenho de Fármacos , Sítios de Ligação , Caspase 2/metabolismo , Caspase 3/metabolismo , Domínio Catalítico , Linhagem Celular , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Humanos , Isoquinolinas/química , Simulação de Dinâmica Molecular , Piperidinas/química , Prolina/química , Especificidade por SubstratoRESUMO
The very late antigen-4 (VLA-4), also known as integrin alpha4beta1, is expressed on monocytes, T- and B-lympohocytes, basophils, and eosinophils and is involved in the massive recruitment of granulocytes in different pathological conditions such as multiple sclerosis and asthma. VLA-4 interacts with its endogenous ligand VCAM-1 during chronic inflammation, and blockade of VLA-4 /VCAM-1 interaction is a potential target for immunosuppression. Two classes of VLA-4 antagonists have so far been reported: beta-amino acid derivatives containing a diaryl urea moiety (BIO-1211) and phenylalanine derivatives (TR-14035). With the aim of clarifying the structural basis responsible for VLA-4 recognition by phenylalanine derivatives, we developed a combined computational study on a set of 128 antagonists available through the literature. Our computational approach is composed of three parts. (i) A VCAM-1 based pharmacophore was constructed with a restricted number of phenylalanine derivatives to identify the region of the protein that resembles synthetic antagonists. The pharmacophore was instrumental in constructing an alignment of a set of 128 compounds. This alignment was exploited to build a pseudoreceptor model with the RECEPTOR program. (ii) 3D-QSAR analysis was carried out on the computed electrostatic and steric interaction energies with the pseudoreceptor surface. The 3D-QSAR analysis yielded a predictive model able to explain much of the variance of the 128 antagonists. (iii) A homology modeling study of the headpiece of VLA-4 based on the crystal structure of alphavbeta3 was performed. Docking experiments of TR-14035 into the binding site of VLA-4 aided the interpretation of the 3D-QSAR model. The obtained results will be fruitful for the design of new potent and selective antagonists of VLA-4.
Assuntos
Integrina alfa4beta1/química , Fenilalanina/química , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Relação Quantitativa Estrutura-Atividade , Homologia de Sequência de Aminoácidos , Molécula 1 de Adesão de Célula Vascular/químicaRESUMO
The influence of electrostatic interactions in determining selectivity for individual subtypes of metabotropic glutamate receptors (mGluRs) is evaluated for a small set of agonists by using the program Delphi and the information thus obtained is compared with docking experiments carried out with AutoDock. The evaluation of the electrostatic component of the free energy of binding for L-Glu, L-AP4, or S-PPG to mGluR1, mGluR2, and mGluR4 subtypes allowed for the detection of subtle differences in the electronic properties of the three subtypes, differences that can account for the observed agonist selectivity.