Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cell Mol Gastroenterol Hepatol ; 16(2): 287-316, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37172822

RESUMO

BACKGROUND & AIMS: The colonic epithelium requires continuous renewal by crypt resident intestinal stem cells (ISCs) and transit-amplifying (TA) cells to maintain barrier integrity, especially after inflammatory damage. The diet of high-income countries contains increasing amounts of sugar, such as sucrose. ISCs and TA cells are sensitive to dietary metabolites, but whether excess sugar affects their function directly is unknown. METHODS: Here, we used a combination of 3-dimensional colonoids and a mouse model of colon damage/repair (dextran sodium sulfate colitis) to show the direct effect of sugar on the transcriptional, metabolic, and regenerative functions of crypt ISCs and TA cells. RESULTS: We show that high-sugar conditions directly limit murine and human colonoid development, which is associated with a reduction in the expression of proliferative genes, adenosine triphosphate levels, and the accumulation of pyruvate. Treatment of colonoids with dichloroacetate, which forces pyruvate into the tricarboxylic acid cycle, restored their growth. In concert, dextran sodium sulfate treatment of mice fed a high-sugar diet led to massive irreparable damage that was independent of the colonic microbiota and its metabolites. Analyses on crypt cells from high-sucrose-fed mice showed a reduction in the expression of ISC genes, impeded proliferative potential, and increased glycolytic potential without a commensurate increase in aerobic respiration. CONCLUSIONS: Taken together, our results indicate that short-term, excess dietary sucrose can directly modulate intestinal crypt cell metabolism and inhibit ISC/TA cell regenerative proliferation. This knowledge may inform diets that better support the treatment of acute intestinal injury.


Assuntos
Colite , Açúcares da Dieta , Camundongos , Humanos , Animais , Dextranos , Colite/metabolismo , Piruvatos
2.
Oncoimmunology ; 12(1): 2182058, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875551

RESUMO

T cell Receptor (TCR) Fusion Construct (TRuC®) T cells harness all signaling subunits of the TCR to activate T cells and eliminate tumor cells, with minimal release of cytokines. While adoptive cell therapy with chimeric antigen receptor (CAR)-T cells has shown unprecedented clinical efficacy against B-cell malignancies, monotherapy with CAR-T cells has suboptimal clinical efficacy against solid tumors, probably because of the artificial signaling properties of the CAR. TRuC-T cells may address the suboptimal efficacy of existing CAR-T therapies for solid tumors. Here, we report that mesothelin (MSLN)-specific TRuC-T cells (referred to as TC-210 T cells) potently kill MSLN+ tumor cells in vitro and efficiently eradicate MSLN+ mesothelioma, lung, and ovarian cancers in xenograft mouse tumor models. When benchmarked against MSLN-targeted BBζ CAR-T cells (MSLN-BBζ CAR-T cells), TC-210 T cells show an overall comparable level of efficacy; however, TC-210 T cells consistently show faster tumor rejection kinetics that are associated with earlier intratumoral accumulation and earlier signs of activation. Furthermore, in vitro and ex vivo metabolic profiling suggests TC-210 T cells have lower glycolytic activity and higher mitochondrial metabolism than MSLN-BBζ CAR-T cells. These data highlight TC-210 T cells as a promising cell therapy for treating MSLN-expressing cancers. The differentiated profile from CAR-T cells may translate into better efficacy and safety of TRuC-T cells for solid tumors.


Assuntos
Mesotelioma Maligno , Neoplasias Ovarianas , Humanos , Animais , Camundongos , Feminino , Linfócitos T , Mesotelina , Receptores de Antígenos de Linfócitos T , Modelos Animais de Doenças
3.
J Immunother Cancer ; 11(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36914208

RESUMO

BACKGROUND: Cellular immunotherapies for cancer represent a means by which a patient's immune system can be augmented with high numbers of tumor-specific T cells. Chimeric antigen receptor (CAR) therapy involves genetic engineering to 'redirect' peripheral T cells to tumor targets, showing remarkable potency in blood cancers. However, due to several resistance mechanisms, CAR-T cell therapies remain ineffective in solid tumors. We and others have shown the tumor microenvironment harbors a distinct metabolic landscape that produces a barrier to immune cell function. Further, altered differentiation of T cells within tumors induces defects in mitochondrial biogenesis, resulting in severe cell-intrinsic metabolic deficiencies. While we and others have shown murine T cell receptor (TCR)-transgenic cells can be improved through enhanced mitochondrial biogenesis, we sought to determine whether human CAR-T cells could be enabled through a metabolic reprogramming approach. MATERIALS AND METHODS: Anti-EGFR CAR-T cells were infused in NSG mice which bore A549 tumors. The tumor infiltrating lymphocytes were analyzed for exhaustion and metabolic deficiencies. Lentiviruses carrying PPAR-gamma coactivator 1α (PGC-1α), PGC-1αS571A and NT-PGC-1α constructs were used to co-transduce T cells with anti-EGFR CAR lentiviruses. We performed metabolic analysis via flow cytometry and Seahorse analysis in vitro as well as RNA sequencing. Finally, we treated therapeutically A549-carrying NSG mice with either PGC-1α or NT-PGC-1α anti-EGFR CAR-T cells. We also analyzed the differences in the tumor-infiltrating CAR-T cells when PGC-1α is co-expressed. RESULTS: Here, in this study, we show that an inhibition resistant, engineered version of PGC-1α, can metabolically reprogram human CAR-T cells. Transcriptomic profiling of PGC-1α-transduced CAR-T cells showed this approach effectively induced mitochondrial biogenesis, but also upregulated programs associated with effector functions. Treatment of immunodeficient animals bearing human solid tumors with these cells resulted in substantially improved in vivo efficacy. In contrast, a truncated version of PGC-1α, NT-PGC-1α, did not improve the in vivo outcomes. CONCLUSIONS: Our data further support a role for metabolic reprogramming in immunomodulatory treatments and highlight the utility of genes like PGC-1α as attractive candidates to include in cargo along with chimeric receptors or TCRs for cell therapy of solid tumors.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T , Linfócitos T , Microambiente Tumoral
4.
Oral Oncol ; 140: 106363, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36963232

RESUMO

OBJECTIVES: Head and neck squamous cell carcinoma (HNSCC) causes severe pain and opioids, the mainstay of pain management, may have immunomodulatory effects. We evaluated the effect of opioids on immunotherapy efficacy in recurrent/metastatic (R/M) HNSCC patients. MATERIALS AND METHODS: In a retrospective study of 66 R/M HNSCC patients from 2015 to 2020, opioid dosage, calculated as mean morphine milligram equivalent per day, was assessed on the day of anti-PD-1 monoclonal antibody (mAb) treatment and most recent prior visit. Intratumoral T cells were evaluated by single cell RNAseq and immunohistochemistry prior to treatment. Univariable and multivariable Cox proportional hazards and logistic regression models were used to estimate the association between opioid usage, progression-free survival (PFS), overall survival (OS), disease control rate. RESULTS: Patients were 79% male, 35% oropharynx, 35% oral cavity, 40% locoregional recurrence, and 56% platinum failure. Higher opioid dosage by continuous variable was significantly associated with lower PFS (p = 0.016) and OS (p < 0.001). In multivariable analysis, including platinum failure status and PD-L1, higher opioids were associated with lower OS. Opioid usage by categorical variable was associated with significantly lower intratumoral CD8+ T cells. Opioid receptor, OPRM1, expression was identified in intratumoral and circulating T cells. CONCLUSIONS: In our study cohort of anti-PD-1 mAb treatment in R/M HNSCC patients, higher opioids were associated with significantly lower PFS and OS and lower CD8+ T cells in the tumor microenvironment. To our knowledge, this is the first analysis in R/M HNSCC patients and further research into the clinical and biologic effect of opioids is warranted.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Humanos , Masculino , Feminino , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/etiologia , Analgésicos Opioides/uso terapêutico , Linfócitos T CD8-Positivos/metabolismo , Estudos Retrospectivos , Platina/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/etiologia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/etiologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Imunoterapia/efeitos adversos , Recidiva Local de Neoplasia/patologia , Microambiente Tumoral
5.
Nat Immunol ; 24(2): 267-279, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36543958

RESUMO

CD8+ T cells are critical for elimination of cancer cells. Factors within the tumor microenvironment (TME) can drive these cells to a hypofunctional state known as exhaustion. The most terminally exhausted T (tTex) cells are resistant to checkpoint blockade immunotherapy and might instead limit immunotherapeutic efficacy. Here we show that intratumoral CD8+ tTex cells possess transcriptional features of CD4+Foxp3+ regulatory T cells and are similarly capable of directly suppressing T cell proliferation ex vivo. tTex cell suppression requires CD39, which generates immunosuppressive adenosine. Restricted deletion of CD39 in endogenous CD8+ T cells resulted in slowed tumor progression, improved immunotherapy responsiveness and enhanced infiltration of transferred tumor-specific T cells. CD39 is induced on tTex cells by tumor hypoxia, thus mitigation of hypoxia limits tTex suppression. Together, these data suggest tTex cells are an important regulatory population in cancer and strategies to limit their generation, reprogram their immunosuppressive state or remove them from the TME might potentiate immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Antígenos CD , Hipóxia , Neoplasias/terapia , Linfócitos T Reguladores , Microambiente Tumoral
6.
Clin Cancer Res ; 29(1): 154-164, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36166093

RESUMO

PURPOSE: Overweight/obese (OW/OB) patients with metastatic melanoma unexpectedly have improved outcomes with immune checkpoint inhibitors (ICI) and BRAF-targeted therapies. The mechanism(s) underlying this association remain unclear, thus we assessed the integrated molecular, metabolic, and immune profile of tumors, as well as gut microbiome features, for associations with patient body mass index (BMI). EXPERIMENTAL DESIGN: Associations between BMI [normal (NL < 25) or OW/OB (BMI ≥ 25)] and tumor or microbiome characteristics were examined in specimens from 782 patients with metastatic melanoma across 7 cohorts. DNA associations were evaluated in The Cancer Genome Atlas cohort. RNA sequencing from 4 cohorts (n = 357) was batch corrected and gene set enrichment analysis (GSEA) by BMI category was performed. Metabolic profiling was conducted in a subset of patients (x = 36) by LC/MS, and in flow-sorted melanoma tumor cells (x = 37) and patient-derived melanoma cell lines (x = 17) using the Seahorse XF assay. Gut microbiome features were examined in an independent cohort (n = 371). RESULTS: DNA mutations and copy number variations were not associated with BMI. GSEA demonstrated that tumors from OW/OB patients were metabolically quiescent, with downregulation of oxidative phosphorylation and multiple other metabolic pathways. Direct metabolite analysis and functional metabolic profiling confirmed decreased central carbon metabolism in OW/OB metastatic melanoma tumors and patient-derived cell lines. The overall structure, diversity, and taxonomy of the fecal microbiome did not differ by BMI. CONCLUSIONS: These findings suggest that the host metabolic phenotype influences melanoma metabolism and provide insight into the improved outcomes observed in OW/OB patients with metastatic melanoma treated with ICIs and targeted therapies. See related commentary by Smalley, p. 5.


Assuntos
Melanoma , Segunda Neoplasia Primária , Humanos , Fatores de Risco , Variações do Número de Cópias de DNA , Obesidade/complicações , Sobrepeso , Melanoma/genética , Melanoma/complicações , Índice de Massa Corporal
7.
J Immunother Cancer ; 9(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33986123

RESUMO

The majority of patients with recurrent/metastatic squamous cell carcinoma of the head and neck (HNSCC) (R/M) do not benefit from anti-PD-1 therapy. Hypoxia induced immunosuppression may be a barrier to immunotherapy. Therefore, we examined the metabolic effect of anti-PD-1 therapy in a murine MEER HNSCC model as well as intratumoral hypoxia in R/M patients. In order to characterize the tumor microenvironment in PD-1 resistance, a MEER cell line was created from the parental line that are completely resistant to anti-PD-1. These cell lines were then metabolically profiled using seahorse technology and injected into C57/BL6 mice. After tumor growth, mice were pulsed with pimonidazole and immunofluorescent imaging was performed to analyze hypoxia and T cell infiltration. To validate the preclinical results, we analyzed tissues from R/M patients (n=36) treated with anti-PD-1 mAb, via immunofluorescent imaging for number of CD8+ T cells (CD8), Tregs and the percent area (CAIX) and mean intensity (I) of carbonic anhydrase IX in tumor. We analyzed disease control rate (DCR), progression free survival (PFS), and overall survival (OS) using proportional odds and proportional hazards (Cox) regression. We found that anti-PD-1 resistant MEER has significantly higher oxidative metabolism, while there was no difference in glycolytic metabolism. Intratumoral hypoxia was significantly increased and CD8+ T cells decreased in anti-PD-1 resistant tumors compared with parental tumors in the same mouse. In R/M patients, lower tumor hypoxia by CAIX/I was significantly associated with DCR (p=0.007), PFS, and OS, and independently associated with response (p=0.028) and PFS (p=0.04) in a multivariate model including other significant immune factors. During PD-1 resistance, tumor cells developed increased oxidative metabolism leading to increased intratumoral hypoxia and a decrease in CD8+ T cells. Lower tumor hypoxia was independently associated with increased efficacy of anti-PD-1 therapy in patients with R/M HNSCC. To our knowledge this is the first analysis of the effect of hypoxia in this patient population and highlights its importance not only as a predictive biomarker but also as a potential target for therapeutic intervention.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Hipóxia Tumoral , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos Imunológicos/efeitos adversos , Linhagem Celular Tumoral , Metabolismo Energético/efeitos dos fármacos , Feminino , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Oxirredução , Receptor de Morte Celular Programada 1/metabolismo , Intervalo Livre de Progressão , Estudos Retrospectivos , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Carga Tumoral/efeitos dos fármacos , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Methods Mol Biol ; 2265: 81-89, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33704707

RESUMO

Cancer cells have deregulated metabolism that can contribute to the unique metabolic makeup of the tumor microenvironment. This can be variable between patients, and it is important to understand these differences since they potentially can affect therapy response. Here we discuss a method of processing and assaying metabolism from direct ex vivo murine and human tumor samples using seahorse extracellular flux analysis. This provides real-time profiling of oxidative versus glycolytic metabolism and can help infer the metabolic status of the tumor microenvironment.


Assuntos
Melanoma/metabolismo , Análise do Fluxo Metabólico/métodos , Mitocôndrias/metabolismo , Consumo de Oxigênio , Animais , Técnicas de Cultura de Células/métodos , Humanos , Análise do Fluxo Metabólico/instrumentação , Camundongos , Mitocôndrias/efeitos dos fármacos , Oxirredução , Fosforilação Oxidativa/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Microambiente Tumoral
9.
Nature ; 591(7851): 645-651, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33589820

RESUMO

Regulatory T (Treg) cells, although vital for immune homeostasis, also represent a major barrier to anti-cancer immunity, as the tumour microenvironment (TME) promotes the recruitment, differentiation and activity of these cells1,2. Tumour cells show deregulated metabolism, leading to a metabolite-depleted, hypoxic and acidic TME3, which places infiltrating effector T cells in competition with the tumour for metabolites and impairs their function4-6. At the same time, Treg cells maintain a strong suppression of effector T cells within the TME7,8. As previous studies suggested that Treg cells possess a distinct metabolic profile from effector T cells9-11, we hypothesized that the altered metabolic landscape of the TME and increased activity of intratumoral Treg cells are linked. Here we show that Treg cells display broad heterogeneity in their metabolism of glucose within normal and transformed tissues, and can engage an alternative metabolic pathway to maintain suppressive function and proliferation. Glucose uptake correlates with poorer suppressive function and long-term instability, and high-glucose conditions impair the function and stability of Treg cells in vitro. Treg cells instead upregulate pathways involved in the metabolism of the glycolytic by-product lactic acid. Treg cells withstand high-lactate conditions, and treatment with lactate prevents the destabilizing effects of high-glucose conditions, generating intermediates necessary for proliferation. Deletion of MCT1-a lactate transporter-in Treg cells reveals that lactate uptake is dispensable for the function of peripheral Treg cells but required intratumorally, resulting in slowed tumour growth and an increased response to immunotherapy. Thus, Treg cells are metabolically flexible: they can use 'alternative' metabolites in the TME to maintain their suppressive identity. Further, our results suggest that tumours avoid destruction by not only depriving effector T cells of nutrients, but also metabolically supporting regulatory populations.


Assuntos
Ácido Láctico/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Glucose/metabolismo , Humanos , Linfócitos do Interstício Tumoral/imunologia , Masculino , Camundongos , Fatores Supressores Imunológicos/imunologia , Fatores Supressores Imunológicos/metabolismo , Linfócitos T Reguladores/imunologia
10.
Nat Immunol ; 22(2): 205-215, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33398183

RESUMO

Cancer and chronic infections induce T cell exhaustion, a hypofunctional fate carrying distinct epigenetic, transcriptomic and metabolic characteristics. However, drivers of exhaustion remain poorly understood. As intratumoral exhausted T cells experience severe hypoxia, we hypothesized that metabolic stress alters their responses to other signals, specifically, persistent antigenic stimulation. In vitro, although CD8+ T cells experiencing continuous stimulation or hypoxia alone differentiated into functional effectors, the combination rapidly drove T cell dysfunction consistent with exhaustion. Continuous stimulation promoted Blimp-1-mediated repression of PGC-1α-dependent mitochondrial reprogramming, rendering cells poorly responsive to hypoxia. Loss of mitochondrial function generated intolerable levels of reactive oxygen species (ROS), sufficient to promote exhausted-like states, in part through phosphatase inhibition and the consequent activity of nuclear factor of activated T cells. Reducing T cell-intrinsic ROS and lowering tumor hypoxia limited T cell exhaustion, synergizing with immunotherapy. Thus, immunologic and metabolic signaling are intrinsically linked: through mitigation of metabolic stress, T cell differentiation can be altered to promote more functional cellular fates.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Metabolismo Energético , Ativação Linfocitária , Linfócitos do Interstício Tumoral/metabolismo , Melanoma Experimental/metabolismo , Mitocôndrias/metabolismo , Microambiente Tumoral , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Feminino , Células HEK293 , Humanos , Linfócitos do Interstício Tumoral/imunologia , Masculino , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/imunologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Hipóxia Tumoral
11.
Oncoimmunology ; 9(1): 1708064, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32076578

RESUMO

The immune checkpoint blockade (ICB) immunotherapy has prolonged overall survival for cancer patients but the response rates are low. The resistance to ICB is likely due to compensatory upregulation of additional immune inhibitory molecules. In this study, we first systematically examined Tim-3 expression in immune cells in mouse tumors and found that Tim-3 was specifically up-regulated in a large number of Treg, conventional CD4+, CD8+ T cells, dendritic cell 1 (DC1), and macrophage 1 (M1) in the tumor microenvironment (TME). Interestingly, Tim-3+ T cells in the TME were phenotypically effector but not "exhausted" T cells because Tim-3+ PD-1+ CD8+ T cells had a higher number of mitochondria, greater levels of glycolysis, and higher tumor-specific cytolytic activities compared to Tim-3- PD-1- CD8+ T cells. The combination treatment with Tim-3 and PD-1 mAbs resulted in a synergistic antitumor activity but also increased the expression of Lag-3 and GITR in TIL, demonstrating cross-regulation between multiple checkpoint molecules. Furthermore, we found that the antitumor efficacy with triple combination of Tim-3, PD-1, and Lag3 mAbs was much greater than any two antibodies. Mechanistically, we demonstrated that simultaneous targeting of Tim-3, PD-1, and Lag-3 cooperatively increased the levels of granzyme B and tumor-specific cytolytic activities of CD8+ TIL. Our data indicate that multiple checkpoint molecules are coordinately upregulated to inhibit the function of hyperactivated T cells in the TME and requirement for the simultaneous blockade of PD-1, Tim-3 and Lag3 for cancer treatment.


Assuntos
Linfócitos do Interstício Tumoral , Microambiente Tumoral , Animais , Linfócitos T CD8-Positivos , Receptor Celular 2 do Vírus da Hepatite A , Humanos , Camundongos , Receptor de Morte Celular Programada 1
12.
Nat Immunol ; 21(3): 331-342, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32066950

RESUMO

Germinal center B cells (GCBCs) are critical for generating long-lived humoral immunity. How GCBCs meet the energetic challenge of rapid proliferation is poorly understood. Dividing lymphocytes typically rely on aerobic glycolysis over oxidative phosphorylation for energy. Here we report that GCBCs are exceptional among proliferating B and T cells, as they actively oxidize fatty acids (FAs) and conduct minimal glycolysis. In vitro, GCBCs had a very low glycolytic extracellular acidification rate but consumed oxygen in response to FAs. [13C6]-glucose feeding revealed that GCBCs generate significantly less phosphorylated glucose and little lactate. Further, GCBCs did not metabolize glucose into tricarboxylic acid (TCA) cycle intermediates. Conversely, [13C16]-palmitic acid labeling demonstrated that GCBCs generate most of their acetyl-CoA and acetylcarnitine from FAs. FA oxidation was functionally important, as drug-mediated and genetic dampening of FA oxidation resulted in a selective reduction of GCBCs. Hence, GCBCs appear to uncouple rapid proliferation from aerobic glycolysis.


Assuntos
Linfócitos B/metabolismo , Ácidos Graxos/metabolismo , Centro Germinativo/metabolismo , Animais , Linfócitos B/imunologia , Proliferação de Células , Metabolismo Energético , Ácidos Graxos não Esterificados/metabolismo , Expressão Gênica , Centro Germinativo/citologia , Centro Germinativo/imunologia , Glucose/metabolismo , Glicólise/genética , Técnicas In Vitro , Metaboloma , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Oxirredução , Fosforilação Oxidativa , Consumo de Oxigênio
13.
Immunity ; 51(3): 548-560.e4, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31471106

RESUMO

Immunotherapy can reinvigorate dormant responses to cancer, but response rates remain low. Oncolytic viruses, which replicate in cancer cells, induce tumor lysis and immune priming, but their immune consequences are unclear. We profiled the infiltrate of aggressive melanomas induced by oncolytic Vaccinia virus using RNA sequencing and found substantial remodeling of the tumor microenvironment, dominated by effector T cell influx. However, responses to oncolytic viruses were incomplete due to metabolic insufficiencies induced by the tumor microenvironment. We identified the adipokine leptin as a potent metabolic reprogramming agent that supported antitumor responses. Leptin metabolically reprogrammed T cells in vitro, and melanoma cells expressing leptin were immunologically controlled in mice. Engineering oncolytic viruses to express leptin in tumor cells induced complete responses in tumor-bearing mice and supported memory development in the tumor infiltrate. Thus, leptin can provide metabolic support to tumor immunity, and oncolytic viruses represent a platform to deliver metabolic therapy.


Assuntos
Leptina/imunologia , Melanoma/imunologia , Vírus Oncolíticos/imunologia , Linfócitos T/imunologia , Animais , Linhagem Celular Tumoral , Imunoterapia/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microambiente Tumoral/imunologia , Vaccinia virus/imunologia
14.
Front Immunol ; 10: 1451, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31338091

RESUMO

In myeloid dendritic cells (DC), deletion of the mechanistic target of rapamycin complex 2 (TORC2) results in an augmented pro-inflammatory phenotype and T cell stimulatory activity; however, the underlying mechanism has not been resolved. Here, we demonstrate that mouse bone marrow-derived TORC2-deficient myeloid DC (TORC2-/- DC) utilize an altered metabolic program, characterized by enhanced baseline glycolytic function compared to wild-type WT control (Ctrl) DC, increased dependence on glycolytic ATP production, elevated lipid content and higher viability following stimulation with LPS. In addition, TORC2-/- DC display an increased spare respiratory capacity (SRC) compared to WT Ctrl DC; this metabolic phenotype corresponds with increased mitochondrial mass and mean mitochondrial DNA copy number, and failure of TORC2-/- DC mitochondria to depolarize following LPS stimulation. Our data suggest that the enhanced metabolic activity of TORC2-/- DC may be due to compensatory TORC1 pathway activity, namely increased expression of multiple genes upstream of Akt/TORC1 activity, including the integrin alpha IIb, protein tyrosine kinase 2/focal adhesion kinase, IL-7R and Janus kinase 1(JAK1), and the activation of downstream targets of TORC1, including p70S6K, eukaryotic translation initiation factor 4E binding protein 1 (4EBP1) and CD36 (fatty acid translocase). These enhanced TORC1 pathway activities may culminate in increased expression of the nuclear receptor peroxisome proliferator-activated receptor γ (Pparγ) that regulates fatty acid storage, and the transcription factor sterol regulatory element-binding transcription factor 1 (Srebf1). Taken together, our data suggest that TORC2 may function to restrain TORC1-driven metabolic activity and mitochondrial regulation in myeloid DC.


Assuntos
Células Dendríticas/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/deficiência , Fenótipo , Transdução de Sinais/genética , Animais , Respiração Celular/efeitos dos fármacos , Respiração Celular/genética , DNA Mitocondrial , Glicólise/efeitos dos fármacos , Glicólise/genética , Complexo de Golgi/metabolismo , Gotículas Lipídicas/metabolismo , Lipopolissacarídeos/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , NF-kappa B/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa , Sirolimo/farmacologia , Transcriptoma
15.
Immunity ; 51(2): 381-397.e6, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31350177

RESUMO

Regulatory T (Treg) cells are crucial for immune homeostasis, but they also contribute to tumor immune evasion by promoting a suppressive tumor microenvironment (TME). Mice with Treg cell-restricted Neuropilin-1 deficiency show tumor resistance while maintaining peripheral immune homeostasis, thereby providing a controlled system to interrogate the impact of intratumoral Treg cells on the TME. Using this and other genetic models, we showed that Treg cells shaped the transcriptional landscape across multiple tumor-infiltrating immune cell types. Treg cells suppressed CD8+ T cell secretion of interferon-γ (IFNγ), which would otherwise block the activation of sterol regulatory element-binding protein 1 (SREBP1)-mediated fatty acid synthesis in immunosuppressive (M2-like) tumor-associated macrophages (TAMs). Thus, Treg cells indirectly but selectively sustained M2-like TAM metabolic fitness, mitochondrial integrity, and survival. SREBP1 inhibition augmented the efficacy of immune checkpoint blockade, suggesting that targeting Treg cells or their modulation of lipid metabolism in M2-like TAMs could improve cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Macrófagos/metabolismo , Melanoma/imunologia , Neoplasias Experimentais/imunologia , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Carcinogênese , Diferenciação Celular , Ácidos Graxos/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Evasão da Resposta Imune , Interferon gama/metabolismo , Macrófagos/imunologia , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropilina-1/genética , Células Th2/imunologia , Microambiente Tumoral
16.
Cancer Immunol Res ; 7(8): 1258-1266, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31239318

RESUMO

Multiple studies have associated the transcription factor IRF1 with tumor-suppressive activities. Here, we report an opposite tumor cell-intrinsic function of IRF1 in promoting tumor growth. IRF1-deficient tumor cells showed reduced tumor growth in MC38 and CT26 colon carcinoma and B16 melanoma mouse models. This reduction in tumor growth was dependent on host CD8+ T cells. Detailed profiling of tumor-infiltrating leukocytes did not show changes in the various T-cell and myeloid cell populations. However, CD8+ T cells that had infiltrated IRF1-deficieint tumors in vivo exhibited enhanced cytotoxicity. IRF1-deficient tumor cells lost the ability to upregulate PD-L1 expression in vitro and in vivo and were more susceptible to T-cell-mediated killing. Induced expression of PD-L1 in IRF1-deficient tumor cells restored tumor growth. These results indicate differential activity of IRF1 in tumor escape.


Assuntos
Antígeno B7-H1/genética , Regulação Neoplásica da Expressão Gênica , Imunomodulação , Fator Regulador 1 de Interferon/metabolismo , Animais , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Humanos , Memória Imunológica , Imunomodulação/genética , Fator Regulador 1 de Interferon/genética , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Melanoma Experimental , Camundongos , Camundongos Knockout , Linfócitos T/imunologia , Linfócitos T/metabolismo
17.
J Immunol ; 203(1): 117-126, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31127034

RESUMO

Access to nutrients is critical for an effective T cell immune response to infection. Although transporters for sugars and amino acids have previously been described in the context of the CD8+ T cell immune response, the active transport of exogenous fatty acids has remained enigmatic. In this study, we discovered that the sodium-dependent lysophosphatidylcholine (LPC) transporter major facilitator superfamily domain containing 2A (MFSD2A) is upregulated on activated CD8+ T cells and is required for memory T cell maintenance. MFSD2A deficiency in mice resulted in decreased import of LPC esterified to long chain fatty acids into activated CD8+ T cells, and MFSD2A-deficient cells are at a competitive disadvantage resulting in reduced memory T cell formation and maintenance and reduced response to secondary infection. Mechanistically, import of LPCs was required to maintain T cell homeostatic turnover, which when lost resulted in a decreased memory T cell pool and thus a reduced secondary response to repeat infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Listeria/fisiologia , Listeriose/imunologia , Simportadores/metabolismo , Animais , Células Cultivadas , Homeostase , Memória Imunológica , Listeria/genética , Ativação Linfocitária , Lisofosfatidilcolinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovalbumina/imunologia , Simportadores/genética , Regulação para Cima
18.
Nat Immunol ; 20(5): 534-545, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30962593

RESUMO

Lymph-node (LN) stromal cell populations expand during the inflammation that accompanies T cell activation. Interleukin-17 (IL-17)-producing helper T cells (TH17 cells) promote inflammation through the induction of cytokines and chemokines in peripheral tissues. We demonstrate a critical requirement for IL-17 in the proliferation of LN and splenic stromal cells, particularly fibroblastic reticular cells (FRCs), during experimental autoimmune encephalomyelitis and colitis. Without signaling via the IL-17 receptor, activated FRCs underwent cell cycle arrest and apoptosis, accompanied by signs of nutrient stress in vivo. IL-17 signaling in FRCs was not required for the development of TH17 cells, but failed FRC proliferation impaired germinal center formation and antigen-specific antibody production. Induction of the transcriptional co-activator IκBζ via IL-17 signaling mediated increased glucose uptake and expression of the gene Cpt1a, encoding CPT1A, a rate-limiting enzyme of mitochondrial fatty acid oxidation. Hence, IL-17 produced by locally differentiating TH17 cells is an important driver of the activation of inflamed LN stromal cells, through metabolic reprogramming required to support proliferation and survival.


Assuntos
Proliferação de Células , Fibroblastos/imunologia , Interleucina-17/imunologia , Linfonodos/imunologia , Células Estromais/imunologia , Animais , Formação de Anticorpos/genética , Formação de Anticorpos/imunologia , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Células Cultivadas , Colite/genética , Colite/imunologia , Colite/metabolismo , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Fibroblastos/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Linfonodos/citologia , Linfonodos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/imunologia , Receptores de Interleucina-17/metabolismo , Células Estromais/metabolismo , Células Th17/imunologia , Células Th17/metabolismo
19.
Cell Rep ; 27(1): 129-141.e4, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30943396

RESUMO

Lymphocyte activation gene-3 (LAG-3) is an inhibitory receptor expressed by CD4+ T cells and tempers their homeostatic expansion. Because CD4+ T cell proliferation is tightly coupled to bioenergetics, we investigate the role of LAG-3 in modulating naive CD4+ T cell metabolism. LAG-3 deficiency enhances the metabolic profile of naive CD4+ T cells by elevating levels of mitochondrial biogenesis. In vivo, LAG-3 blockade partially restores expansion and the metabolic phenotype of wild-type CD4+ T cells to levels of Lag3-/- CD4+ T cells, solidifying that LAG-3 controls these processes. Lag3-/- CD4+ T cells also demonstrate greater signal transducer and activator of transcription 5 (STAT5) activation, enabling resistance to interleukin-7 (IL-7) deprivation. These results implicate this pathway as a target of LAG-3-mediated inhibition. Additionally, enhancement of STAT5 activation, as a result of LAG-3 deficiency, contributes to greater activation potential in these cells. These results identify an additional mode of regulation elicited by LAG-3 in controlling CD4+ T cell responses.


Assuntos
Antígenos CD/fisiologia , Linfócitos T CD4-Positivos , Metabolismo Energético/genética , Mitocôndrias/fisiologia , Biogênese de Organelas , Animais , Antígenos CD/genética , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/ultraestrutura , Células Cultivadas , Feminino , Ativação Linfocitária/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fase de Repouso do Ciclo Celular/genética , Proteína do Gene 3 de Ativação de Linfócitos
20.
Cancer Immunol Res ; 7(6): 1001-1012, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30988028

RESUMO

Cellular metabolism supports immune cell function. Here, we identify a reduction in fatty acid synthesis and mitochondrial metabolism in dendritic cells (DC) due to α-fetoprotein (AFP), a protein secreted by hepatocellular cancer (HCC). DCs cultured in the presence of AFP show reduced expression of the metabolic regulatory molecules SREBP-1 and PGC1-α. The negative effect of AFP on mitochondrial metabolism and ATP production was confirmed with observation of reduction in basal oxygen consumption rate (OCR) in DCs exposed to AFP derived from cord blood. More severe reduction in basal OCR was observed in tumor-derived DCs exposed to AFP due to downregulation of cytochrome c oxidase. We also showed reduced expression of PGC1-α in circulating myeloid DCs of patients with HCC and impaired capacity to stimulate antigen-specific effector functions. These data show the negative effects of AFP on DC metabolism. These findings elucidate a mechanism of immune suppression in HCC and may help generate therapeutic approaches to reverse such immunosuppression.


Assuntos
Células Dendríticas/metabolismo , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Neoplasias/metabolismo , Fosforilação Oxidativa , alfa-Fetoproteínas/metabolismo , Células Dendríticas/imunologia , Metabolismo Energético , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glicólise , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neoplasias/imunologia , Consumo de Oxigênio , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA