Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Bioessays ; 46(1): e2300054, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38037292

RESUMO

The human fovea is known for its distinctive pit-like appearance, which results from the displacement of retinal layers superficial to the photoreceptors cells. The photoreceptors are found at high density within the foveal region but not the surrounding retina. Efforts to elucidate the mechanisms responsible for these unique features have ruled out cell death as an explanation for pit formation and changes in cell proliferation as the cause of increased photoreceptor density. These findings have led to speculation that mechanical forces acting within and on the retina during development underly the formation of foveal architecture. Here we review eye morphogenesis and retinal remodeling in human embryonic development. Our meta-analysis of the literature suggests that fovea formation is a protracted process involving dynamic changes in ocular shape that start early and continue throughout most of human embryonic development. From these observations, we propose a new model for fovea development.


Assuntos
Fóvea Central , Retina , Humanos , Fóvea Central/fisiologia , Células Fotorreceptoras
2.
Exp Eye Res ; 234: 109611, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37536437

RESUMO

The fovea is a pit in the center of the macula, which is a region of the retina with a high concentration of photoreceptor cells, which accounts for a large degree of visual acuity in primates. The maturation of this primate visual acuity area is characterized by the shallowing and widening of the foveal pit, a decrease in the diameter of the rod-free zone, and an increase in photoreceptor cells packing after birth. Maturation occurs concurrently with progressing age, increasing eye size, and retinal length/area. These observations have led to the hypothesis that the maturation of the fovea might be a function of mechanical variables that remodel the retina. However, this has never been explored outside of primates. Here, we take advantage of the Anolis sagrei lizard, which has a bifoveated retina, to study maturation of the fovea and macula. Eyes were collected from male and female lizards-hatchling, 2-month, 4-month, 6-month, and adult. We found that Anolis maculae undergo a maturation process somewhat different than what has been observed in primates. Anole macular diameters actually increase in size and undergo minimal photoreceptor cell packing, possessing a near complete complement of these cells at the time of hatching. As the anole eye expands, foveal centers experience little change in overall retina cell density with most cell redistribution occurring at macular borders and peripheral retina areas. Gene editing technology has recently been developed in lizards; this study provides a baseline of normal retina maturation for future genetic manipulation studies in anoles.


Assuntos
Lagartos , Animais , Masculino , Feminino , Lagartos/fisiologia , Fóvea Central/fisiologia , Retina/fisiologia , Células Fotorreceptoras/fisiologia , Primatas
3.
Curr Biol ; 33(4): 755-763.e3, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36702128

RESUMO

Reptiles display great diversity in color and pattern, yet much of what we know about vertebrate coloration comes from classic model species such as the mouse and zebrafish.1,2,3,4 Captive-bred ball pythons (Python regius) exhibit a remarkable degree of color and pattern variation. Despite the wide range of Mendelian color phenotypes available in the pet trade, ball pythons remain an overlooked species in pigmentation research. Here, we investigate the genetic basis of the recessive piebald phenotype, a pattern defect characterized by patches of unpigmented skin (leucoderma). We performed whole-genome sequencing and used a case-control approach to discover a nonsense mutation in the gene encoding the transcription factor tfec, implicating this gene in the leucodermic patches in ball pythons. We functionally validated tfec in a lizard model (Anolis sagrei) using the gene editing CRISPR/Cas9 system and TEM imaging of skin. Our findings show that reading frame mutations in tfec affect coloration and lead to a loss of iridophores in Anolis, indicating that tfec is required for chromatophore development. This study highlights the value of captive-bred ball pythons as a model species for accelerating discoveries on the genetic basis of vertebrate coloration.


Assuntos
Cromatóforos , Lagartos , Piebaldismo , Animais , Camundongos , Peixe-Zebra , Lagartos/genética , Pigmentação/genética , Proteínas de Peixe-Zebra , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos
4.
Commun Biol ; 5(1): 1126, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284162

RESUMO

Rapid technological improvements are democratizing access to high quality, chromosome-scale genome assemblies. No longer the domain of only the most highly studied model organisms, now non-traditional and emerging model species can be genome-enabled using a combination of sequencing technologies and assembly software. Consequently, old ideas built on sparse sampling across the tree of life have recently been amended in the face of genomic data drawn from a growing number of high-quality reference genomes. Arguably the most valuable are those long-studied species for which much is already known about their biology; what many term emerging model species. Here, we report a highly complete chromosome-scale genome assembly for the brown anole, Anolis sagrei - a lizard species widely studied across a variety of disciplines and for which a high-quality reference genome was long overdue. This assembly exceeds the vast majority of existing reptile and snake genomes in contiguity (N50 = 253.6 Mb) and annotation completeness. Through the analysis of this genome and population resequence data, we examine the history of repetitive element accumulation, identify the X chromosome, and propose a hypothesis for the evolutionary history of fusions between autosomes and the X that led to the sex chromosomes of A. sagrei.


Assuntos
Lagartos , Animais , Lagartos/genética , Genoma , Cromossomos Sexuais , Genômica , Cromossomo X
5.
Sci Adv ; 8(35): eadd2696, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36054355

RESUMO

Vertebrate myoblast fusion allows for multinucleated muscle fibers to compound the size and strength of mononucleated cells, but the evolution of this important process is unknown. We investigated the evolutionary origins and function of membrane-coalescing agents Myomaker and Myomixer in various groups of chordates. Here, we report that Myomaker likely arose through gene duplication in the last common ancestor of tunicates and vertebrates, while Myomixer appears to have evolved de novo in early vertebrates. Functional tests revealed a complex evolutionary history of myoblast fusion. A prevertebrate phase of muscle multinucleation driven by Myomaker was followed by the later emergence of Myomixer that enables the highly efficient fusion system of vertebrates. Evolutionary comparisons between vertebrate and nonvertebrate Myomaker revealed key structural and mechanistic insights into myoblast fusion. Thus, our findings suggest an evolutionary model of chordate fusogens and illustrate how new genes shape the emergence of novel morphogenetic traits and mechanisms.

6.
Sci Adv ; 8(10): eabm2387, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35263124

RESUMO

Animal coloration is often expressed in periodic patterns that can arise from differential cell migration, yet how these processes are regulated remains elusive. We show that a female-limited polymorphism in dorsal patterning (diamond/chevron) in the brown anole is controlled by a single Mendelian locus. This locus contains the gene CCDC170 that is adjacent to, and coexpressed with, the Estrogen receptor-1 gene, explaining why the polymorphism is female limited. CCDC170 is an organizer of the Golgi-microtubule network underlying a cell's ability to migrate, and the two segregating alleles encode structurally different proteins. Our agent-based modeling of skin development demonstrates that, in principle, a change in cell migratory behaviors is sufficient to switch between the two morphs. These results suggest that CCDC170 might have been co-opted as a switch between color patterning morphs, likely by modulating cell migratory behaviors.

7.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34654747

RESUMO

Hybridization is among the evolutionary mechanisms most frequently hypothesized to drive the success of invasive species, in part because hybrids are common in invasive populations. One explanation for this pattern is that biological invasions coincide with a change in selection pressures that limit hybridization in the native range. To investigate this possibility, we studied the introduction of the brown anole (Anolis sagrei) in the southeastern United States. We find that native populations are highly genetically structured. In contrast, all invasive populations show evidence of hybridization among native-range lineages. Temporal sampling in the invasive range spanning 15 y showed that invasive genetic structure has stabilized, indicating that large-scale contemporary gene flow is limited among invasive populations and that hybrid ancestry is maintained. Additionally, our results are consistent with hybrid persistence in invasive populations resulting from changes in natural selection that occurred during invasion. Specifically, we identify a large-effect X chromosome locus associated with variation in limb length, a well-known adaptive trait in anoles, and show that this locus is often under selection in the native range, but rarely so in the invasive range. Moreover, we find that the effect size of alleles at this locus on limb length is much reduced in hybrids among divergent lineages, consistent with epistatic interactions. Thus, in the native range, epistasis manifested in hybrids can strengthen extrinsic postmating isolation. Together, our findings show how a change in natural selection can contribute to an increase in hybridization in invasive populations.


Assuntos
Lagartos/genética , Seleção Genética , Animais , Variação Genética , Espécies Introduzidas , Hibridização de Ácido Nucleico
8.
Dev Dyn ; 250(11): 1584-1599, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33866663

RESUMO

BACKGROUND: Pronounced asymmetric changes in ocular globe size during eye development have been observed in a number of species ranging from humans to lizards. In contrast, largely symmetric changes in globe size have been described for other species like rodents. We propose that asymmetric changes in the three-dimensional structure of the developing eye correlate with the types of retinal remodeling needed to produce areas of high photoreceptor density. To test this idea, we systematically examined three-dimensional aspects of globe size as a function of eye development in the bifoveated brown anole, Anolis sagrei. RESULTS: During embryonic development, the anole eye undergoes dynamic changes in ocular shape. Initially spherical, the eye elongates in the presumptive foveal regions of the retina and then proceeds through a period of retraction that returns the eye to its spherical shape. During this period of retraction, pit formation and photoreceptor cell packing are observed. We found a similar pattern of elongation and retraction associated with the single fovea of the veiled chameleon, Chamaeleo calyptratus. CONCLUSIONS: These results, together with those reported for other foveated species, support the idea that areas of high photoreceptor packing occur in regions where the ocular globe asymmetrically elongates and retracts during development.


Assuntos
Lagartos , Animais , Desenvolvimento Embrionário , Lagartos/fisiologia , Retina
9.
Sci Rep ; 10(1): 6303, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286419

RESUMO

The avian transition from long to short, distally fused tails during the Mesozoic ushered in the Pygostylian group, which includes modern birds. The avian tail embodies a bipartite anatomy, with the proximal separate caudal vertebrae region, and the distal pygostyle, formed by vertebral fusion. This study investigates developmental features of the two tail domains in different bird groups, and analyzes them in reference to evolutionary origins. We first defined the early developmental boundary between the two tail halves in the chicken, then followed major developmental structures from early embryo to post-hatching stages. Differences between regions were observed in sclerotome anterior/posterior polarity and peripheral nervous system development, and these were consistent in other neognathous birds. However, in the paleognathous emu, the neognathous pattern was not observed, such that spinal nerve development extends through the pygostyle region. Disparities between the neognaths and paleognaths studied were also reflected in the morphology of their pygostyles. The ancestral long-tailed spinal nerve configuration was hypothesized from brown anole and alligator, which unexpectedly more resembles the neognathous birds. This study shows that tail anatomy is not universal in avians, and suggests several possible scenarios regarding bird evolution, including an independent paleognathous long-tailed ancestor.


Assuntos
Galinhas/fisiologia , Especiação Genética , Nervos Espinhais/crescimento & desenvolvimento , Cauda/inervação , Jacarés e Crocodilos/anatomia & histologia , Animais , Embrião de Galinha , Galinhas/anatomia & histologia , Desenvolvimento Embrionário/fisiologia , Fósseis/anatomia & histologia , Lagartos/anatomia & histologia , Filogenia , Nervos Espinhais/anatomia & histologia , Cauda/crescimento & desenvolvimento
10.
Lab Anim ; 54(3): 281-294, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31345120

RESUMO

Anolis lizards have served as important research models in fields ranging from evolution and ecology to physiology and biomechanics. However, anoles are also emerging as important models for studies of embryo development and tissue regeneration. The increased use of anoles in the laboratory has produced a need to establish effective methods of anesthesia, both for routine veterinary procedures and for research procedures. Therefore, we tested the efficacy of different anesthetic treatments in adult female Anolis sagrei. Alfaxalone, dexmedetomidine, hydromorphone, ketamine and tribromoethanol were administered subcutaneously (SC), either alone or combined at varying doses in a total of 64 female anoles. Drug induction time, duration, anesthesia level and adverse effects were assessed. Differences in anesthesia level were observed depending on injection site and drug combination. Alfaxalone/dexmedetomidine and tribromoethanol/dexmedetomidine were the most effective drug combinations for inducing a surgical plane of anesthesia in anoles. Brown anoles injected SC with alfaxalone (30 mg/kg) plus dexmedetomidine (0.1 mg/kg) or with tribromoethanol (400 mg/kg) plus dexmedetomidine (0.1 mg/kg) experienced mean durations of surgical anesthesia levels of 31.2 ± 5.3 and 87.5 ± 19.8 min with full recovery after another 10.9 ± 2.9 and 46.2 ± 41.8 min, respectively. Hydromorphone given with alfaxalone/dexmedetomidine resulted in deep anesthesia with respiratory depression, while ketamine/hydromorphone/dexmedetomidine produced only light to moderate sedation. We determined that alfaxalone/dexmedetomidine or tribromoethanol/dexmedetomidine combinations were sufficient to maintain a lizard under general anesthesia for coeliotomy. This study represents a significant step towards understanding the effects of anesthetic agents in anole lizards and will benefit both veterinary care and research on these animals.


Assuntos
Anestésicos/administração & dosagem , Sedação Consciente/métodos , Injeções Subcutâneas , Lagartos/fisiologia , Manejo da Dor/métodos , Animais , Feminino , Distribuição Aleatória
11.
Curr Biol ; 29(21): R1131-R1133, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31689398

RESUMO

The vestigial wings of emus are a striking illustration of morphological evolution. A new study points to reduced activity of an essential signaling pathway as a factor in the evolution of the emu's stunted wings.


Assuntos
Dromaiidae , Animais , Membro Anterior , Transdução de Sinais , Asas de Animais
12.
Cell Rep ; 28(9): 2288-2292.e3, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461646

RESUMO

CRISPR-Cas9-mediated gene editing has enabled the direct manipulation of gene function in many species. However, the reproductive biology of reptiles presents unique barriers for the use of this technology, and there are no reptiles with effective methods for targeted mutagenesis. Here, we demonstrate that the microinjection of immature oocytes within the ovaries of Anolis sagrei females enables the production of CRISPR-Cas9-induced mutations. This method is capable of producing F0 embryos and hatchlings with monoallelic or biallelic mutations. We demonstrate that these mutations can be transmitted through the germline to establish genetically modified strains of lizards. Direct tests of gene function can now be performed in Anolis lizards, an important model for studies of reptile evolution and development.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Técnicas de Transferência de Genes , Lagartos/genética , Oócitos/metabolismo , Animais , Feminino , Lagartos/fisiologia , Masculino , Mutação
13.
Dev Biol ; 454(2): 128-144, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31247188

RESUMO

The tetrapod limb is a stunning example of evolutionary diversity, with dramatic variation not only among distantly related species, but also between the serially homologous forelimbs (FLs) and hindlimbs (HLs) within species. Despite this variation, highly conserved genetic and developmental programs underlie limb development and identity in all tetrapods, raising the question of how limb diversification is generated from a conserved toolkit. In some breeds of domestic pigeon, shifts in the expression of two conserved limb identity transcription factors, PITX1 and TBX5, are associated with the formation of feathered HLs with partial FL identity. To determine how modulation of PITX1 and TBX5 expression affects downstream gene expression, we compared the transcriptomes of embryonic limb buds from pigeons with scaled and feathered HLs. We identified a set of differentially expressed genes enriched for genes encoding transcription factors, extracellular matrix proteins, and components of developmental signaling pathways with important roles in limb development. A subset of the genes that distinguish scaled and feathered HLs are also differentially expressed between FL and scaled HL buds in pigeons, pinpointing a set of gene expression changes downstream of PITX1 and TBX5 in the partial transformation from HL to FL identity. We extended our analyses by comparing pigeon limb bud transcriptomes to chicken, anole lizard, and mammalian datasets to identify deeply conserved PITX1- and TBX5-responsive components of the limb identity program. Our analyses reveal a suite of predominantly low-level gene expression changes that are conserved across amniotes to regulate the identity of morphologically distinct limbs.


Assuntos
Padronização Corporal/genética , Pé/embriologia , Membro Posterior/embriologia , Animais , Columbidae/genética , Extremidades/embriologia , Plumas , Pé/fisiologia , Membro Anterior/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/metabolismo , Botões de Extremidades/metabolismo , Morfogênese/genética , Organogênese/genética , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Transdução de Sinais , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
14.
Elife ; 72018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30499775

RESUMO

Vertebrate pelvic reduction is a classic example of repeated evolution. Recurrent loss of pelvic appendages in sticklebacks has previously been linked to natural mutations in a pelvic enhancer that maps upstream of Pitx1. The sequence of this upstream PelA enhancer is not conserved to mammals, so we have surveyed a large region surrounding the mouse Pitx1 gene for other possible hind limb control sequences. Here we identify a new pelvic enhancer, PelB, that maps downstream rather than upstream of Pitx1. PelB drives expression in the posterior portion of the developing hind limb, and deleting the sequence from mice alters the size of several hind limb structures. PelB sequences are broadly conserved from fish to mammals. A wild stickleback population lacking the pelvis has an insertion/deletion mutation that disrupts the structure and function of PelB, suggesting that changes in this ancient enhancer contribute to evolutionary modification of pelvic appendages in nature.


Assuntos
Evolução Biológica , Elementos Facilitadores Genéticos , Fatores de Transcrição Box Pareados/genética , Pelve/crescimento & desenvolvimento , Vertebrados/crescimento & desenvolvimento , Vertebrados/genética , Animais , Sequência de Bases , Cromossomos Artificiais Bacterianos/metabolismo , Sequência Conservada , Peixes/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Loci Gênicos , Genoma , Membro Posterior/crescimento & desenvolvimento , Lagartos/embriologia , Camundongos , Fatores de Transcrição Box Pareados/metabolismo , Deleção de Sequência
15.
Biotechniques ; 64(6): 275-278, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29939088

RESUMO

The introduction of CRISPR-Cas9 technology for targeted mutagenesis has revolutionized reverse genetics and made genome editing a realistic option in many model organisms. One of the difficulties with this technique is screening for mutations in large numbers of samples. Many screening approaches for identifying CRISPR-Cas9 mutants have been published; however, in practice these methods are time consuming, expensive, or often yield false positives. This report describes a PCR-based screening approach using non-denaturing PAGE. This approach does not depend on the formation of heteroduplexes and reliably detects changes as small as 1 base-pair (bp) in nucleic acid length at the target site. This approach can be used to identify novel mutations and is also useful as a routine genotyping method.


Assuntos
Sistemas CRISPR-Cas/genética , Técnicas de Genotipagem/métodos , Mutação/genética , Eletroforese em Gel de Poliacrilamida Nativa/métodos , Reação em Cadeia da Polimerase/métodos , Peixe-Zebra/genética , Animais , DNA/análise , DNA/genética
16.
Genome Biol Evol ; 10(2): 489-506, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29360978

RESUMO

Squamates include all lizards and snakes, and display some of the most diverse and extreme morphological adaptations among vertebrates. However, compared with birds and mammals, relatively few resources exist for comparative genomic analyses of squamates, hampering efforts to understand the molecular bases of phenotypic diversification in such a speciose clade. In particular, the ∼400 species of anole lizard represent an extensive squamate radiation. Here, we sequence and assemble the draft genomes of three anole species-Anolis frenatus, Anolis auratus, and Anolis apletophallus-for comparison with the available reference genome of Anolis carolinensis. Comparative analyses reveal a rapid background rate of molecular evolution consistent with a model of punctuated equilibrium, and strong purifying selection on functional genomic elements in anoles. We find evidence for accelerated evolution in genes involved in behavior, sensory perception, and reproduction, as well as in genes regulating limb bud development and hindlimb specification. Morphometric analyses of anole fore and hindlimbs corroborated these findings. We detect signatures of positive selection across several genes related to the development and regulation of the forebrain, hormones, and the iguanian lizard dewlap, suggesting molecular changes underlying behavioral adaptations known to reinforce species boundaries were a key component in the diversification of anole lizards.


Assuntos
Evolução Molecular , Lagartos/genética , Animais , Evolução Biológica , DNA/genética , Variação Genética , Genômica , Lagartos/anatomia & histologia , Lagartos/fisiologia , Anotação de Sequência Molecular , Filogenia , Seleção Genética
17.
Dev Biol ; 434(1): 186-195, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29273440

RESUMO

The PITX1 transcription factor is expressed during hindlimb development, where it plays a critical role in directing hindlimb growth and the specification of hindlimb morphology. While it is known that PITX1 regulates hindlimb formation, in part, through activation of the Tbx4 gene, other transcriptional targets remain to be elucidated. We have used a combination of ChIP-seq and RNA-seq to investigate enhancer regions and target genes that are directly regulated by PITX1 in embryonic mouse hindlimbs. In addition, we have analyzed PITX1 binding sites in hindlimbs of Anolis lizards to identify ancient PITX1 regulatory targets. We find that PITX1-bound regions in both mouse and Anolis hindlimbs are strongly associated with genes implicated in limb and skeletal system development. Gene expression analyses reveal a large number of misexpressed genes in the hindlimbs of Pitx1-/- mouse embryos. By intersecting misexpressed genes with genes that have neighboring mouse PITX1 binding sites, we identified 440 candidate targets of PITX1. Of these candidates, 68 exhibit ultra-conserved PITX1 binding events that are shared between mouse and Anolis hindlimbs. Among the ancient targets of PITX1 are important regulators of cartilage and skeletal muscle development, including Sox9 and Six1. Our data suggest that PITX1 promotes chondrogenesis and myogenesis in the hindlimb by direct regulation of several key members of the cartilage and muscle transcriptional networks.


Assuntos
Condrogênese/fisiologia , Membro Posterior/embriologia , Desenvolvimento Muscular/fisiologia , Fatores de Transcrição Box Pareados/metabolismo , Transcrição Gênica/fisiologia , Animais , Membro Posterior/citologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Lagartos/embriologia , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Fatores de Transcrição Box Pareados/genética , Proteínas de Répteis/genética , Proteínas de Répteis/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
18.
Hum Mol Genet ; 27(1): 107-119, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29126155

RESUMO

Genital malformations are among the most common human birth defects, and both genetic and environmental factors can contribute to these malformations. Development of the external genitalia in mammals relies on complex signaling networks, and disruption of these signaling pathways can lead to genital defects. Islet-1 (ISL1), a member of the LIM/Homeobox family of transcription factors, has been identified as a major susceptibility gene for classic bladder exstrophy in humans, a common form of the bladder exstrophy-epispadias complex (BEEC), and is implicated in a role in urinary tract development. We report that deletion of Isl1 from the genital mesenchyme in mice led to hypoplasia of the genital tubercle and prepuce, with an ectopic urethral opening and epispadias-like phenotype. These mice also developed hydroureter and hydronephrosis. Identification of ISL1 transcriptional targets via ChIP-Seq and expression analyses revealed that Isl1 regulates several important signaling pathways during embryonic genital development, including the BMP, WNT, and FGF cascades. An essential function of Isl1 during development of the external genitalia is to induce Bmp4-mediated apoptosis in the genital mesenchyme. Together, these studies demonstrate that Isl1 plays a critical role during development of the external genitalia and forms the basis for a greater understanding of the molecular mechanisms underlying the pathogenesis of BEEC and urinary tract defects in humans.


Assuntos
Proteína Morfogenética Óssea 4/genética , Fator 10 de Crescimento de Fibroblastos/genética , Genitália/anormalidades , Genitália/embriologia , Proteínas com Homeodomínio LIM/genética , Fatores de Transcrição/genética , Proteína Wnt-5a/genética , Animais , Extrofia Vesical/genética , Extrofia Vesical/metabolismo , Proteína Morfogenética Óssea 4/biossíntese , Proteína Morfogenética Óssea 4/metabolismo , Desenvolvimento Embrionário , Feminino , Fator 10 de Crescimento de Fibroblastos/biossíntese , Fator 10 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genitália/metabolismo , Proteínas com Homeodomínio LIM/biossíntese , Proteínas com Homeodomínio LIM/metabolismo , Masculino , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Camundongos Knockout , Organogênese/genética , Transdução de Sinais , Fatores de Transcrição/biossíntese , Fatores de Transcrição/metabolismo , Anormalidades Urogenitais/genética , Anormalidades Urogenitais/metabolismo , Proteína Wnt-5a/biossíntese , Proteína Wnt-5a/metabolismo
19.
Genesis ; 56(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29076617

RESUMO

Among squamate reptiles, dozens of lineages have independently evolved complete or partial limb reduction. This remarkable convergence of limbless and limb-reduced phenotypes provides multiple natural replicates of different ages to explore the evolution and development of the vertebrate limb and the gene regulatory network that controls its formation. The most successful and best known of the limb-reduced squamates are snakes, which evolved a limb-reduced body form more than 100 million years ago. Recent studies have revealed the unexpected finding that many ancient limb enhancers are conserved in the genomes of snakes. Analyses in limbed animals show that many of these limb enhancers are also active during development of the phallus, suggesting that these enhancers may have been retained in snakes due their importance in regulating transcription in the external genitalia. This hypothesis is substantiated by functional tests of snake enhancers, which demonstrate that snake enhancer elements have lost limb function while retaining genital enhancer function. The large degree of overlap in the gene regulatory networks deployed during limb and phallus development may act to constrain the divergence of shared gene network components and the evolution of appendage morphology. Future studies will reveal whether limb regulatory elements have undergone similar functional changes in other lineages of limb-reduced squamates.


Assuntos
Evolução Biológica , Extremidades , Redes Reguladoras de Genes , Animais , Pleiotropia Genética , Répteis , Serpentes
20.
Elife ; 5: e12115, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26977633

RESUMO

Birds display remarkable diversity in the distribution and morphology of scales and feathers on their feet, yet the genetic and developmental mechanisms governing this diversity remain unknown. Domestic pigeons have striking variation in foot feathering within a single species, providing a tractable model to investigate the molecular basis of skin appendage differences. We found that feathered feet in pigeons result from a partial transformation from hindlimb to forelimb identity mediated by cis-regulatory changes in the genes encoding the hindlimb-specific transcription factor Pitx1 and forelimb-specific transcription factor Tbx5. We also found that ectopic expression of Tbx5 is associated with foot feathers in chickens, suggesting similar molecular pathways underlie phenotypic convergence between these two species. These results show how changes in expression of regional patterning genes can generate localized changes in organ fate and morphology, and provide viable molecular mechanisms for diversity in hindlimb scale and feather distribution.


Assuntos
Galinhas/anatomia & histologia , Columbidae/anatomia & histologia , Plumas , Membro Anterior/anatomia & histologia , Regulação da Expressão Gênica , Membro Posterior/anatomia & histologia , Animais , Galinhas/genética , Columbidae/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA