Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
mSphere ; 1(1)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303700

RESUMO

Human adenoviruses (HAdV), species D in particular (HAdV-D), are frequently associated with epidemic keratoconjunctivitis (EKC). Although the infection originates at the ocular surface epithelium, the mechanisms by which HAdV-Ds bypass the membrane-associated mucin (MAM)-rich glycocalyx of the ocular surface epithelium to trigger infection and inflammation remain unknown. Here, we report that an EKC-causing adenovirus (HAdV-D37), but not a non-EKC-causing one (HAdV-D19p), induces ectodomain release of MUC16-a MAM with barrier functions at the ocular surface-from cultured human corneal and conjunctival epithelial cells. HAdV-D37, but not HAdV-D19p, is also found to decrease the glycocalyx barrier function of corneal epithelial cells, as determined by rose bengal dye penetrance assays. Furthermore, results from quantitative PCR (qPCR) amplification of viral genomic DNA using primers specific to a conserved region of the E1B gene show that, in comparison to infection by HAdV-D19p, infection by HAdV-D37 is significantly increased in corneal epithelial cells. Collectively, these results point to a MUC16 ectodomain release-dependent mechanism utilized by the EKC-causing HAdV-D37 to initiate infection at the ocular surface. These findings are important in terms of understanding the pathogenesis of adenoviral keratoconjunctivitis. Similar MAM ectodomain release mechanisms may be prevalent across other mucosal epithelia in the body (e.g., the airway epithelium) that are prone to adenoviral infection. IMPORTANCE Human adenoviruses (HAdVs) are double-stranded DNA viruses that cause infections across all mucosal tissues in the body. At the ocular surface, HAdVs cause keratoconjunctivitis (E. Ford, K. E. Nelson, and D. Warren, Epidemiol Rev 9:244-261, 1987, and C. M. Robinson, D. Seto, M. S. Jones, D. W. Dyer, and J. Chodosh, Infect Genet Evol 11:1208-1217, 2011, doi:10.1016/j.meegid.2011.04.031)-a highly contagious infection that accounts for nearly 60% of conjunctivitis cases in the United States (R. P. Sambursky, N. Fram, and E. J. Cohen, Optometry 78:236-239, 2007, doi:10.1016/j.optm.2006.11.012, and A. M. Pihos, J Optom 6:69-74, 2013, doi:10.1016/j.optom.2012.08.003). The infection begins with HAdV entry within ocular surface epithelial cells; however, the mechanisms used by HAdVs to transit the otherwise protective mucosal barrier of ocular surface epithelial cells prior to entry remain unknown. Here, we report that the highly virulent keratoconjunctivitis-causing HAdV-D37 induces release of the extracellular domain (ectodomain) of MUC16, a major component of the mucosal barrier of ocular surface epithelial cells, prior to infecting underlying cells. Currently, there is no specific treatment for controlling this infection. Understanding the early steps involved in the pathogenesis of keratoconjunctivitis and using this information to intercept adenoviral entry within cells may guide the development of novel strategies for controlling the infection.

2.
Arch Microbiol ; 198(2): 149-59, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26581415

RESUMO

The gammaproteobacterium Thiomicrospira crunogena XCL-2 is an aerobic sulfur-oxidizing hydrothermal vent chemolithoautotroph that has a CO2 concentrating mechanism (CCM), which generates intracellular dissolved inorganic carbon (DIC) concentrations much higher than extracellular, thereby providing substrate for carbon fixation at sufficient rate. This CCM presumably requires at least one active DIC transporter to generate the elevated intracellular concentrations of DIC measured in this organism. In this study, the half-saturation constant (K CO2) for purified carboxysomal RubisCO was measured (276 ± 18 µM) which was much greater than the K CO2 of whole cells (1.03 µM), highlighting the degree to which the CCM facilitates CO2 fixation under low CO2 conditions. To clarify the bioenergetics powering active DIC uptake, cells were incubated in the presence of inhibitors targeting ATP synthesis (DCCD) or proton potential (CCCP). Incubations with each of these inhibitors resulted in diminished intracellular ATP, DIC, and fixed carbon, despite an absence of an inhibitory effect on proton potential in the DCCD-incubated cells. Electron transport complexes NADH dehydrogenase and the bc 1 complex were found to be insensitive to DCCD, suggesting that ATP synthase was the primary target of DCCD. Given the correlation of DIC uptake to the intracellular ATP concentration, the ABC transporter genes were targeted by qRT-PCR, but were not upregulated under low-DIC conditions. As the T. crunogena genome does not include orthologs of any genes encoding known DIC uptake systems, these data suggest that a novel, yet to be identified, ATP- and proton potential-dependent DIC transporter is active in this bacterium. This transporter serves to facilitate growth by T. crunogena and other Thiomicrospiras in the many habitats where they are found.


Assuntos
Ciclo do Carbono/fisiologia , Carbono/metabolismo , Piscirickettsiaceae/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Bacteriana da Expressão Gênica , Piscirickettsiaceae/enzimologia , Piscirickettsiaceae/genética
3.
PLoS One ; 9(6): e100393, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24968021

RESUMO

Membrane-anchored mucins are present in the apical surface glycocalyx of mucosal epithelial cells, each mucosal epithelium having at least two of the mucins. The mucins have been ascribed barrier functions, but direct comparisons of their functions within the same epithelium have not been done. In an epithelial cell line that expresses the membrane-anchored mucins, MUC1 and MUC16, the mucins were independently and stably knocked down using shRNA. Barrier functions tested included dye penetrance, bacterial adherence and invasion, transepithelial resistance, tight junction formation, and apical surface size. Knockdown of MUC16 decreased all barrier functions tested, causing increased dye penetrance and bacterial invasion, decreased transepithelial resistance, surprisingly, disruption of tight junctions, and greater apical surface cell area. Knockdown of MUC1 did not decrease barrier function, in fact, barrier to dye penetrance and bacterial invasion increased significantly. These data suggest that barrier functions of membrane-anchored mucins vary in the context of other membrane mucins, and MUC16 provides a major barrier when present.


Assuntos
Antígeno Ca-125/metabolismo , Membrana Celular/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas de Membrana/metabolismo , Mucina-1/metabolismo , Aderência Bacteriana , Antígeno Ca-125/genética , Corantes/metabolismo , Impedância Elétrica , Células Epiteliais/microbiologia , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Mucina-1/genética , Mucosa/citologia , Junções Íntimas/metabolismo
4.
Am J Pathol ; 183(1): 35-48, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23665202

RESUMO

Goblet cell numbers decrease within the conjunctival epithelium in drying and cicatrizing ocular surface diseases. Factors regulating goblet cell differentiation in conjunctival epithelium are unknown. Recent data indicate that the transcription factor SAM-pointed domain epithelial-specific transcription factor (Spdef) is essential for goblet cell differentiation in tracheobronchial and gastrointestinal epithelium of mice. Using Spdef(-/-) mice, we determined that Spdef is required for conjunctival goblet cell differentiation and that Spdef(-/-) mice, which lack conjunctival goblet cells, have significantly increased corneal surface fluorescein staining and tear volume, a phenotype consistent with dry eye. Microarray analysis of conjunctival epithelium in Spdef(-/-) mice revealed down-regulation of goblet cell-specific genes (Muc5ac, Tff1, Gcnt3). Up-regulated genes included epithelial cell differentiation/keratinization genes (Sprr2h, Tgm1) and proinflammatory genes (Il1-α, Il-1ß, Tnf-α), all of which are up-regulated in dry eye. Interestingly, four Wnt pathway genes were down-regulated. SPDEF expression was significantly decreased in the conjunctival epithelium of Sjögren syndrome patients with dry eye and decreased goblet cell mucin expression. These data demonstrate that Spdef is required for conjunctival goblet cell differentiation and down-regulation of SPDEF may play a role in human dry eye with goblet cell loss. Spdef(-/-) mice have an ocular surface phenotype similar to that in moderate dry eye, providing a new, more convenient model for the disease.


Assuntos
Túnica Conjuntiva/patologia , Modelos Animais de Doenças , Síndromes do Olho Seco/patologia , Células Caliciformes/patologia , Proteínas Proto-Oncogênicas c-ets/deficiência , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Túnica Conjuntiva/metabolismo , Regulação para Baixo , Síndromes do Olho Seco/genética , Síndromes do Olho Seco/metabolismo , Feminino , Marcadores Genéticos , Células Caliciformes/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Proteínas Proto-Oncogênicas c-ets/metabolismo , RNA/análise , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Síndrome de Sjogren/metabolismo , Regulação para Cima
5.
Microb Pathog ; 56: 40-6, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23168398

RESUMO

Streptococcus pneumoniae is a pathogen associated with a range of invasive and noninvasive infections. Despite the identification of the majority of virulence factors expressed by S. pneumoniae, knowledge of the strategies used by this bacterium to trigger infections, especially those originating at wet-surfaced epithelia, remains limited. In this regard, we recently reported a mechanism used by a nonencapsulated, epidemic conjunctivitis-causing strain of S. pneumoniae (strain SP168) to gain access into ocular surface epithelial cells. Mechanistically, strain SP168 secretes a zinc metalloproteinase, encoded by a truncated zmpC gene, to cleave off the ectodomain of a vital defense component - the membrane mucin MUC16 - from the apical glycocalyx barrier of ocular surface epithelial cells and, thereby invades underlying epithelial cells. Here, we compare the truncated SP168 ZmpC to its highly conserved archetype from S. pneumoniae serotype 4 (TIGR4), which has been linked to pneumococcal virulence in previous studies. Comparative nucleotide sequence analyses revealed that the zmpC gene corresponding to strain SP168 has two stretches of DNA deleted near its 5' end. A third 3 bp in-frame deletion, resulting in the elimination of an alanine residue, was found towards the middle segment of the SP168 zmpC. Closer examination of the primary structure revealed that the SP168 ZmpC lacks the canonical LPXTG motif - a signature typical of several surface proteins of gram-positive bacteria and of other pneumococcal zinc metalloproteinases. Surprisingly, in vitro assays performed using recombinant forms of ZmpC indicated that the truncated SP168 ZmpC induces more cleavage of the MUC16 ectodomain than its TIGR4 counterpart. This feature may help explain, in part, why S. pneumoniae strain SP168 is better equipped at abrogating the MUC16 glycocalyx barrier en route to causing epidemic conjunctivitis.


Assuntos
Antígeno Ca-125/metabolismo , Conjuntivite/microbiologia , Proteínas de Membrana/metabolismo , Metaloendopeptidases/metabolismo , Infecções Pneumocócicas/microbiologia , Fatores de Virulência/metabolismo , Conjuntivite/epidemiologia , DNA Bacteriano/química , DNA Bacteriano/genética , Epidemias , Hidrólise , Metaloendopeptidases/genética , Dados de Sequência Molecular , Infecções Pneumocócicas/epidemiologia , Análise de Sequência de DNA , Deleção de Sequência , Fatores de Virulência/genética
6.
PLoS One ; 7(3): e32418, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22412870

RESUMO

The majority of bacterial infections occur across wet-surfaced mucosal epithelia, including those that cover the eye, respiratory tract, gastrointestinal tract and genitourinary tract. The apical surface of all these mucosal epithelia is covered by a heavily glycosylated glycocalyx, a major component of which are membrane-associated mucins (MAMs). MAMs form a barrier that serves as one of the first lines of defense against invading bacteria. While opportunistic bacteria rely on pre-existing defects or wounds to gain entry to epithelia, non opportunistic bacteria, especially the epidemic disease-causing ones, gain access to epithelial cells without evidence of predisposing injury. The molecular mechanisms employed by these non opportunistic pathogens to breach the MAM barrier remain unknown. To test the hypothesis that disease-causing non opportunistic bacteria gain access to the epithelium by removal of MAMs, corneal, conjunctival, and tracheobronchial epithelial cells, cultured to differentiate to express the MAMs, MUCs 1, 4, and 16, were exposed to a non encapsulated, non typeable strain of Streptococcus pneumoniae (SP168), which causes epidemic conjunctivitis. The ability of strain SP168 to induce MAM ectodomain release from epithelia was compared to that of other strains of S. pneumoniae, as well as the opportunistic pathogen Staphylococcus aureus. The experiments reported herein demonstrate that the epidemic disease-causing S. pneumoniae species secretes a metalloproteinase, ZmpC, which selectively induces ectodomain shedding of the MAM MUC16. Furthermore, ZmpC-induced removal of MUC16 from the epithelium leads to loss of the glycocalyx barrier function and enhanced internalization of the bacterium. These data suggest that removal of MAMs by bacterial enzymes may be an important virulence mechanism employed by disease-causing non opportunistic bacteria to gain access to epithelial cells to cause infection.


Assuntos
Antígeno Ca-125/metabolismo , Células Epiteliais/metabolismo , Glicocálix/metabolismo , Proteínas de Membrana/metabolismo , Metaloproteases/metabolismo , Streptococcus pneumoniae/enzimologia , Linhagem Celular , Células Cultivadas , Células Epiteliais/microbiologia , Humanos , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Mucosa/metabolismo , Mucosa/microbiologia , Deleção de Sequência , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/patogenicidade
7.
J Bacteriol ; 192(22): 5881-6, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20870775

RESUMO

Bacterial microcompartments (BMCs) are polyhedral organelles found in an increasingly wide variety of bacterial species. These structures, typified by carboxysomes of cyanobacteria and many chemoautotrophs, function to compartmentalize important reaction sequences of metabolic pathways. Unlike their eukaryotic counterparts, which are surrounded by lipid bilayer membranes, these microbial organelles are bounded by a thin protein shell that is assembled from multiple copies of a few different polypeptides. The main shell proteins form hexamers whose edges interact to create the thin sheets that form the facets of the polyhedral BMCs. Each hexamer contains a central pore hypothesized to mediate flux of metabolites into and out of the organelle. Because several distinctly different metabolic processes are found in the various BMCs studied to date, it has been proposed that a common advantage to packaging these pathways within shell-bound compartments is to optimize the concentration of volatile metabolites in the BMC by maintaining an interior pH that is lower than that of the cytoplasm. We have tested this idea by recombinantly fusing a pH-sensitive green fluorescent protein (GFP) to ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), the major enzyme component inside the carboxysome. Our results suggest that the carboxysomal pH is similar to that of its external environment and that the protein shell does not constitute a proton barrier. The explanation for the sundry BMC functions must therefore be sought in the characteristics of the pores that traverse their shells.


Assuntos
Proteínas de Bactérias/metabolismo , Cianobactérias/metabolismo , Organelas/metabolismo , Prótons , Transporte Biológico , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo
8.
PLoS One ; 4(10): e7521, 2009 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-19844578

RESUMO

BACKGROUND: Carboxysomes are polyhedral protein microcompartments found in many autotrophic bacteria; they encapsulate the CO(2) fixing enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) within a thin protein shell and provide an environment that enhances the catalytic capabilities of the enzyme. Two types of shell protein constituents are common to carboxysomes and related microcompartments of heterotrophic bacteria, and the genes for these proteins are found in a large variety of bacteria. METHODOLOGY/PRINCIPAL FINDINGS: We have created a Halothiobacillus neapolitanus knockout mutant that does not produce the two paralogous CsoS4 proteins thought to occupy the vertices of the icosahedral carboxysomes and related microcompartments. Biochemical and ultrastructural analyses indicated that the mutant predominantly forms carboxysomes of normal appearance, in addition to some elongated microcompartments. Despite their normal shape, purified mutant carboxysomes are functionally impaired, although the activities of the encapsulated enzymes are not negatively affected. CONCLUSIONS/SIGNIFICANCE: In the absence of the CsoS4 proteins the carboxysome shell loses its limited permeability to CO(2) and is no longer able to provide the catalytic advantage RubisCO derives from microcompartmentalization. This study presents direct evidence that the diffusion barrier property of the carboxysome shell contributes significantly to the biological function of the carboxysome.


Assuntos
Bactérias/metabolismo , Dióxido de Carbono/química , Regulação Bacteriana da Expressão Gênica , Halothiobacillus/genética , Ribulose-Bifosfato Carboxilase/química , DNA Bacteriano/metabolismo , Difusão , Deleção de Genes , Genótipo , Microscopia Eletrônica de Transmissão , Mutagênese , Mutação , Organelas/metabolismo , Peptídeos/química , Proteínas Recombinantes/química
9.
PLoS One ; 3(10): e3570, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18974784

RESUMO

BACKGROUND: The carboxysome is a bacterial microcompartment that consists of a polyhedral protein shell filled with ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), the enzyme that catalyzes the first step of CO2 fixation via the Calvin-Benson-Bassham cycle. METHODOLOGY/PRINCIPAL FINDINGS: To analyze the role of RubisCO in carboxysome biogenesis in vivo we have created a series of Halothiobacillus neapolitanus RubisCO mutants. We identified the large subunit of the enzyme as an important determinant for its sequestration into alpha-carboxysomes and found that the carboxysomes of H. neapolitanus readily incorporate chimeric and heterologous RubisCO species. Intriguingly, a mutant lacking carboxysomal RubisCO assembles empty carboxysome shells of apparently normal shape and composition. CONCLUSIONS/SIGNIFICANCE: These results indicate that carboxysome shell architecture is not determined by the enzyme they normally sequester. Our study provides, for the first time, clear evidence that carboxysome contents can be manipulated and suggests future nanotechnological applications that are based upon engineered protein microcompartments.


Assuntos
Estruturas Celulares/metabolismo , Halothiobacillus/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Antígenos Heterófilos/metabolismo , Dióxido de Carbono/metabolismo , Estruturas Celulares/fisiologia , Regulação Bacteriana da Expressão Gênica , Halothiobacillus/genética , Halothiobacillus/crescimento & desenvolvimento , Halothiobacillus/ultraestrutura , Organismos Geneticamente Modificados , Proteínas Recombinantes de Fusão/metabolismo , Ribulose-Bifosfato Carboxilase/genética
10.
Proc Natl Acad Sci U S A ; 102(16): 5749-54, 2005 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-15817685

RESUMO

The recruitment model for gene activation presumes that DNA is a platform on which the requisite components of the transcriptional machinery are assembled. In contrast to this idea, we show here that Rap1/Gcr1/Gcr2 transcriptional activation in yeast cells occurs through a large anchored protein platform, the Nup84 nuclear pore subcomplex. Surprisingly, Nup84 and associated subcomplex components activate transcription themselves in vivo when fused to a heterologous DNA-binding domain. The Rap1 coactivators Gcr1 and Gcr2 form an important bridge between the yeast nuclear pore complex and the transcriptional machinery. Nucleoporin activation may be a widespread eukaryotic phenomenon, because it was first detected as a consequence of oncogenic rearrangements in acute myeloid leukemia and related syndromes in humans. These chromosomal translocations fuse a homeobox DNA-binding domain to the human homolog (hNup98) of a transcriptionally active component of the yeast Nup84 subcomplex. We conclude that Rap1 target genes are activated by moving to contact compartmentalized nuclear assemblages, rather than through recruitment of the requisite factors to chromatin by means of diffusion. We term this previously undescribed mechanism "reverse recruitment" and discuss the possibility that it is a central feature of eukaryotic gene regulation. Reverse recruitment stipulates that activators work by bringing the DNA to an nuclear pore complex-tethered platform of assembled transcriptional machine components.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Genes Reporter , Humanos , Complexos Multiproteicos , Membrana Nuclear/química , Membrana Nuclear/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética , Transativadores/genética , Fatores de Transcrição/genética
11.
Genetics ; 165(3): 1017-29, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14668361

RESUMO

Growth of Saccharomyces cerevisiae requires coordination of cell cycle events (e.g., new cell wall deposition) with constitutive functions like energy generation and duplication of protein mass. The latter processes are stimulated by the phosphoprotein Gcr1p, a transcriptional activator that operates through two different Rap1p-mediated mechanisms to boost expression of glycolytic and ribosomal protein genes, respectively. Simultaneous disruption of both mechanisms results in a loss of glucose responsiveness and a dramatic drop in translation rate. Since a critical rate of protein synthesis (CRPS) is known to mediate passage through Start and determine cell size by modulating levels of Cln3p, we hypothesized that GCR1 regulates cell cycle progression by coordinating it with growth. We therefore constructed and analyzed gcr1delta cln3delta and gcr1delta cln1delta cln2delta strains. Both strains are temperature and cold sensitive; interestingly, they exhibit different arrest phenotypes. The gcr1delta cln3delta strain becomes predominantly unbudded with 1N DNA content (G1 arrest), whereas gcr1delta cln1delta cln2delta cells exhibit severe elongation and apparent M phase arrest. Further analysis demonstrated that the Rap1p/Gcr1p complex mediates rapid growth in glucose by stimulating both cellular metabolism and CLN transcription.


Assuntos
Ciclo Celular , Ciclinas/genética , Proteínas de Ligação a DNA/fisiologia , Proteínas Fúngicas/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Sequência de Bases , Primers do DNA , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Glucose/metabolismo , Mutação , Biossíntese de Proteínas , Saccharomyces cerevisiae/citologia , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA