Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 95(12): 122002, 2005 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-16197067

RESUMO

We present the first lattice QCD calculation with realistic sea quark content of the D+-meson decay constant f(D+). We use the MILC Collaboration's publicly available ensembles of lattice gauge fields, which have a quark sea with two flavors (up and down) much lighter than a third (strange). We obtain f(D+)=201+/-3+/-17 MeV, where the errors are statistical and a combination of systematic errors. We also obtain f(Ds)=249+/-3+/-16 MeV for the Ds meson.

2.
Phys Rev Lett ; 94(1): 011601, 2005 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-15698062

RESUMO

We present the first three-flavor lattice QCD calculations for D-->pilnu and D-->Klnu semileptonic decays. Simulations are carried out using ensembles of unquenched gauge fields generated by the MILC Collaboration. With an improved staggered action for light quarks, we are able to simulate at light quark masses down to 1/8 of the strange mass. Consequently, the systematic error from the chiral extrapolation is much smaller than in previous calculations with Wilson-type light quarks. Our results for the form factors at q(2)=0 are f(D-->pi)(+)(0)=0.64(3)(6) and f(D-->K)(+)(0)=0.73(3)(7), where the first error is statistical and the second is systematic, added in quadrature. Combining our results with experimental branching ratios, we obtain the Cabibbo-Kobayashi-Maskawa matrix elements |V(cd)|=0.239(10)(24)(20) and |V(cs)|=0.969(39)(94)(24), where the last errors are from experimental uncertainties.

3.
Phys Rev Lett ; 92(2): 022001, 2004 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-14753930

RESUMO

The recently developed Symanzik-improved staggered-quark discretization allows unquenched lattice-QCD simulations with much smaller (and more realistic) quark masses than previously possible. To test this formalism, we compare experiment with a variety of nonperturbative calculations in QCD drawn from a restricted set of "gold-plated" quantities. We find agreement to within statistical and systematic errors of 3% or less. We discuss the implications for phenomenology and, in particular, for heavy-quark physics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA