RESUMO
Despite recent therapeutic advances, the 5-year survival rate for adults with acute myeloid leukemia (AML) is poor and standard-of-care chemotherapy is associated with significant toxicity, highlighting the need for new therapeutic approaches. Recent work from our group and others established that the G protein-coupled estrogen receptor (GPER) is tumor suppressive in melanoma and other solid tumors. We performed a preliminary screen of human cancer cell lines from multiple malignancies and found that LNS8801, a synthetic pharmacologic agonist of GPER currently in early phase clinical trials, promoted apoptosis in human AML cells. Using human AML cell lines and primary cells, we show that LNS8801 inhibits human AML in preclinical in vitro models, while not affecting normal mononuclear cells. Although GPER is broadly expressed in normal and malignant myeloid cells, this cancer-specific LNS8801-induced inhibition appeared to be independent of GPER signaling. LNS8801 induced AML cell death primarily through a caspase-dependent apoptosis pathway. This was independent of secreted classical death receptor ligands, and instead required induction of reactive oxygen species (ROS) and activation of endoplasmic reticulum (ER) stress response pathways including IRE1α. These studies demonstrate a novel activity of LNS8801 in AML cells and show that targeting ER stress with LNS8801 may be a useful therapeutic approach for AML. Significance: Previous work demonstrated that LNS8801 inhibits cancer via GPER activation, especially in solid tumors. Here we show that LNS8801 inhibits AML via GPER-independent mechanisms that include ROS induction and ER activation.
Assuntos
Endorribonucleases , Leucemia Mieloide Aguda , Adulto , Humanos , Espécies Reativas de Oxigênio , Proteínas Serina-Treonina Quinases , Leucemia Mieloide Aguda/tratamento farmacológico , Estrogênios , Estresse do Retículo EndoplasmáticoRESUMO
In placental mammals, estradiol levels are chronically elevated during pregnancy, but quickly drop to prepartum levels following birth. This may produce an "estrogen withdrawal" state that has been linked to changes in affective states in humans and rodents during the postpartum period. The neural mechanisms underlying these affective changes, however, are understudied. We used a hormone-simulated pseudopregnancy (HSP), a model of postpartum estrogen withdrawal, in adult female C57BL/6 mice to test the impact of postpartum estradiol withdrawal on several behavioral measures of anxiety and motivation. We found that estradiol withdrawal following HSP increased anxiety-like behavior in the elevated plus maze, but not in the open field or marble burying tests. Although hormone treatment during HSP consistently increased sucrose consumption, sucrose preference was generally not impacted by hormone treatment or subsequent estradiol withdrawal. In the social motivation test, estradiol withdrawal decreased the amount of time spent in proximity to a social stimulus animal. These behavioral changes were accompanied by changes in the expression of ∆FosB, a transcription factor correlated with stable long-term plasticity, in the nucleus accumbens (NAc). Specifically, estrogen-withdrawn females had higher ∆FosB expression in the nucleus accumbens core, but ∆FosB expression did not vary across hormone conditions in the nucleus accumbens shell. Using transgenic reporter mice, we found that this increase in ∆FosB occurred in both D1- and D2-expressing cells in the NAc core. Together, these results suggest that postpartum estrogen withdrawal impacts anxiety and motivation and increases ∆FosB in the NAc core.