RESUMO
The detection of early molecular mechanisms and potential biomarkers in Parkinson's disease (PD) remains a challenge. Recent research has pointed to novel roles for post-translational citrullination/deimination caused by peptidylarginine deiminases (PADs), a family of calcium-activated enzymes, in the early stages of the disease. The current study assessed brain-region-specific citrullinated protein targets and their associated protein-protein interaction networks alongside PAD isozymes in the 6-hydroxydopamine (6-OHDA) induced rat model of pre-motor PD. Six brain regions (cortex, hippocampus, striatum, midbrain, cerebellum and olfactory bulb) were compared between controls/shams and the pre-motor PD model. For all brain regions, there was a significant difference in citrullinated protein IDs between the PD model and the controls. Citrullinated protein hits were most abundant in cortex and hippocampus, followed by cerebellum, midbrain, olfactory bulb and striatum. Citrullinome-associated pathway enrichment analysis showed correspondingly considerable differences between the six brain regions; some were overlapping for controls and PD, some were identified for the PD model only, and some were identified in control brains only. The KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways identified in PD brains only were associated with neurological, metabolic, immune and hormonal functions and included the following: "Axon guidance"; "Spinocerebellar ataxia"; "Hippo signalling pathway"; "NOD-like receptor signalling pathway"; "Phosphatidylinositol signalling system"; "Rap1 signalling pathway"; "Platelet activation"; "Yersinia infection"; "Fc gamma R-mediated phagocytosis"; "Human cytomegalovirus infection"; "Inositol phosphate metabolism"; "Thyroid hormone signalling pathway"; "Progesterone-mediated oocyte maturation"; "Oocyte meiosis"; and "Choline metabolism in cancer". Some brain-region-specific differences were furthermore observed for the five PAD isozymes (PADs 1, 2, 3, 4 and 6), with most changes in PAD 2, 3 and 4 when comparing control and PD brain regions. Our findings indicate that PAD-mediated protein citrullination plays roles in metabolic, immune, cell signalling and neurodegenerative disease-related pathways across brain regions in early pre-motor stages of PD, highlighting PADs as targets for future therapeutic avenues.
Assuntos
Encéfalo , Citrulinação , Modelos Animais de Doenças , Doença de Parkinson , Animais , Ratos , Encéfalo/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Masculino , Mapas de Interação de Proteínas , Desiminases de Arginina em Proteínas/metabolismo , Ratos Sprague-Dawley , OxidopaminaRESUMO
Over 10 million people worldwide live with Parkinson's disease (PD) and 4% of affected people are diagnosed before the age of 50. Research on early PD-related pathways is therefore of considerable importance. Peptidylarginine deiminases (PADs) are a family of calcium-activated enzymes that, through post-translational deimination of arginine to citrulline, contribute to changes in protein function, including in pathological processes. Recent studies have highlighted roles for PADs in a range of neurological disorders including PD, but overall, investigations on PADs in Lewy body disease (LBD), including PD, are still scarce. Hence, the current pilot study aimed at performing an immunohistochemistry screen of post-mortem human brain sections from Braak stages 4-6 from PD patients, as well as patients with incidental LBD (ILBD). We assessed differences in PAD isozyme detection (assessing all five PADs), in total protein deimination/citrullination and histone H3 deimination-which is an indicator of epigenetic changes and extracellular trap formation (ETosis), which can elicit immune responses and has involvement in pathogenic conditions. The findings of our pilot study indicate that PADs and deimination are increased in cingulate cortex and hippocampus, particularly in earlier stages of the disease. PAD2 and PAD3 were the most strongly upregulated PAD isozymes, with some elevation also observed for PAD1, while PAD4 and PAD6 increase was less marked in PD brains. Total protein deimination and histone H3 deimination were furthermore increased in PD brains, with a considerable increase at earlier Braak stages, compared with controls. Our findings point to a significant contribution of PADs, which may further aid early disease biomarker discovery, in PD and other LBDs.
Assuntos
Citrulinação , Doença por Corpos de Lewy , Humanos , Desiminases de Arginina em Proteínas/metabolismo , Projetos Piloto , Histonas/metabolismo , Doença por Corpos de Lewy/metabolismo , Corpos de Lewy/metabolismo , Isoenzimas/metabolismo , Hidrolases/metabolismoRESUMO
An increasing number of studies in recent years have focused on the role that the gut may play in Parkinson's Disease (PD) pathogenesis, suggesting that the maintenance of a healthy gut may lead to potential treatments of the disease. The health of microbiota has been shown to be directly associated with parameters that play a potential role in PD including gut barrier integrity, immunity, function, metabolism and the correct functioning of the gut-brain axis. The gut microbiota (GM) may therefore be employed as valuable indicators for early diagnosis of PD and potential targets for preventing or treating PD symptoms. Preserving the gut homeostasis using probiotics may therefore lead to a promising treatment strategy due to their known benefits in improving constipation, motor impairments, inflammation, and neurodegeneration. However, the mechanisms underlying the effects of probiotics in PD are yet to be clarified. In this project, we have tested the efficacy of an oral probiotic suspension, Symprove™, on an established animal model of PD. Symprove™, unlike many commercially available probiotics, has been shown to be resistant to gastric acidity, improve symptoms in gastrointestinal diseases and improve gut integrity in an in vitro PD model. In this study, we used an early-stage PD rat model to determine the effect of Symprove™ on neurodegeneration and neuroinflammation in the brain and on plasma cytokine levels, GM composition and short chain fatty acid (SCFA) release. Symprove™ was shown to significantly influence both the gut and brain of the PD model. It preserved the gut integrity in the PD model, reduced plasma inflammatory markers and changed microbiota composition. The treatment also prevented the reduction in SCFAs and striatal inflammation and prevented tyrosine hydroxylase (TH)-positive cell loss by 17% compared to that observed in animals treated with placebo. We conclude that Symprove™ treatment may have a positive influence on the symptomology of early-stage PD with obvious implications for the improvement of gut integrity and possibly delaying/preventing the onset of neuroinflammation and neurodegeneration in human PD patients.
RESUMO
The anatomy and physiology of monosynaptic connections in rodent hippocampal CA1 have been extensively studied in recent decades. Yet, the resulting knowledge remains disparate and difficult to reconcile. Here, we present a data-driven approach to integrate the current state-of-the-art knowledge on the synaptic anatomy and physiology of rodent hippocampal CA1, including axo-dendritic innervation patterns, number of synapses per connection, quantal conductances, neurotransmitter release probability, and short-term plasticity into a single coherent resource. First, we undertook an extensive literature review of paired recordings of hippocampal neurons and compiled experimental data on their synaptic anatomy and physiology. The data collected in this manner is sparse and inhomogeneous due to the diversity of experimental techniques used by different groups, which necessitates the need for an integrative framework to unify these data. To this end, we extended a previously developed workflow for the neocortex to constrain a unifying in silico reconstruction of the synaptic physiology of CA1 connections. Our work identifies gaps in the existing knowledge and provides a complementary resource toward a more complete quantification of synaptic anatomy and physiology in the rodent hippocampal CA1 region.
Assuntos
Região CA1 Hipocampal/fisiologia , Simulação por Computador , Interpretação Estatística de Dados , Modelos Neurológicos , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Animais , Neocórtex/fisiologia , Transmissão Sináptica/fisiologiaRESUMO
The identification of biomarkers for early diagnosis of Parkinson's disease (PD) is of pivotal importance for improving approaches for clinical intervention. The use of translatable animal models of pre-motor PD therefore offers optimal opportunities for novel biomarker discovery in vivo. Peptidylarginine deiminases (PADs) are a family of calcium-activated enzymes that contribute to protein misfolding through post-translational deimination of arginine to citrulline. Furthermore, PADs are an active regulator of extracellular vesicle (EV) release. Both protein deimination and extracellular vesicles (EVs) are gaining increased attention in relation to neurodegenerative diseases, including in PD, while roles in pre-motor PD have yet to be investigated. The current study aimed at identifying protein candidates of deimination in plasma and plasma-EVs in a rat model of pre-motor PD, to assess putative contributions of such post-translational changes in the early stages of disease. EV-cargo was further assessed for deiminated proteins as well as three key micro-RNAs known to contribute to inflammation and hypoxia (miR21, miR155, and miR210) and also associated with PD. Overall, there was a significant increase in circulating plasma EVs in the PD model compared with sham animals and inflammatory and hypoxia related microRNAs were significantly increased in plasma-EVs of the pre-motor PD model. A significantly higher number of protein candidates were deiminated in the pre-motor PD model plasma and plasma-EVs, compared with those in the sham animals. KEGG (Kyoto encyclopedia of genes and genomes) pathways identified for deiminated proteins in the pre-motor PD model were linked to "Alzheimer's disease", "PD", "Huntington's disease", "prion diseases", as well as for "oxidative phosphorylation", "thermogenesis", "metabolic pathways", "Staphylococcus aureus infection", gap junction, "platelet activation", "apelin signalling", "retrograde endocannabinoid signalling", "systemic lupus erythematosus", and "non-alcoholic fatty liver disease". Furthermore, PD brains showed significantly increased staining for total deiminated proteins in the brain vasculature in cortex and hippocampus, as well as increased immunodetection of deiminated histone H3 in dentate gyrus and cortex. Our findings identify EVs and post-translational protein deimination as novel biomarkers in early pre-motor stages of PD.
Assuntos
Encéfalo/metabolismo , Citrulinação , Vesículas Extracelulares/metabolismo , Doença de Parkinson/sangue , Desiminases de Arginina em Proteínas/metabolismo , Animais , Biomarcadores/sangue , Encéfalo/fisiopatologia , Cromatografia Líquida , Modelos Animais de Doenças , Vesículas Extracelulares/enzimologia , Vesículas Extracelulares/ultraestrutura , Imuno-Histoquímica , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Microscopia Eletrônica de Transmissão , Doença de Parkinson/enzimologia , Doença de Parkinson/metabolismo , Mapas de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Proteômica , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em TandemRESUMO
How cortical network activity processes information is of importance to a large number of basic and clinical scientific questions. The protocol described here identifies the basic building blocks of this circuitry. The in-depth studies of cortical regions will ultimately provide other scientists with the circuit components needed for an understanding of how the brain acquires, processes and stores information and what goes wrong in disease, while the electrophysiological and morphological data are widely used by computational neuroscientists in the construction of model networks that explore information processing. The protocol outlined here describes how biocytin-filled cells recorded in the CA2 region of the hippocampus are recovered and then reconstructed in 3D. Additionally, the protocol describes the demonstration of calcium binding protein or peptide content in recorded interneurons.
Assuntos
Hipocampo/metabolismo , Imageamento Tridimensional/métodos , Interneurônios/metabolismo , Lisina/análogos & derivados , Rede Nervosa/metabolismo , Animais , Hipocampo/química , Hipocampo/citologia , Interneurônios/química , Lisina/análise , Lisina/metabolismo , Rede Nervosa/química , Rede Nervosa/citologia , RatosRESUMO
Every neuron is part of a network, exerting its function by transforming multiple spatiotemporal synaptic input patterns into a single spiking output. This function is specified by the particular shape and passive electrical properties of the neuronal membrane, and the composition and spatial distribution of ion channels across its processes. For a variety of physiological or pathological reasons, the intrinsic input/output function may change during a neuron's lifetime. This process results in high variability in the peak specific conductance of ion channels in individual neurons. The mechanisms responsible for this variability are not well understood, although there are clear indications from experiments and modeling that degeneracy and correlation among multiple channels may be involved. Here, we studied this issue in biophysical models of hippocampal CA1 pyramidal neurons and interneurons. Using a unified data-driven simulation workflow and starting from a set of experimental recordings and morphological reconstructions obtained from rats, we built and analyzed several ensembles of morphologically and biophysically accurate single cell models with intrinsic electrophysiological properties consistent with experimental findings. The results suggest that the set of conductances expressed in any given hippocampal neuron may be considered as belonging to two groups: one subset is responsible for the major characteristics of the firing behavior in each population and the other is responsible for a robust degeneracy. Analysis of the model neurons suggests several experimentally testable predictions related to the combination and relative proportion of the different conductances that should be expressed on the membrane of different types of neurons for them to fulfill their role in the hippocampus circuitry.
Assuntos
Hipocampo/fisiologia , Interneurônios/fisiologia , Neurônios/fisiologia , Células Piramidais/fisiologia , Potenciais de Ação/fisiologia , Animais , Eletrofisiologia , Masculino , Modelos Neurológicos , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/fisiologiaRESUMO
Early diagnosis of Parkinson's disease (PD) offers perhaps, the most promising route to a successful clinical intervention, and the use of an animal model exhibiting symptoms comparable to those observed in PD patients in the early stage of the disease, may facilitate screening of novel therapies for delaying the onset of more debilitating motor and behavioral abnormalities. In this study, a rat model of pre-motor PD was used to study the etiology of hyposmia, a non-motor symptom linked to the early stage of the disease when the motor symptoms have yet to be experienced. The study focussed on determining the effect of a partial reduction of both dopamine and noradrenaline levels on the olfactory cortex. Neuroinflammation and striking structural changes were observed in the model. These changes were prevented by treatment with a neuroprotective drug, a glucagon-like peptide-1 (GLP1) receptor agonist, exendin-4 (EX-4).
RESUMO
Studying neocortex and hippocampus in parallel, we are struck by the similarities. All three to four layered allocortices and the six layered mammalian neocortex arise in the pallium. All receive and integrate multiple cortical and subcortical inputs, provide multiple outputs and include an array of neuronal classes. During development, each cell positions itself to sample appropriate local and distant inputs and to innervate appropriate targets. Simpler cortices had already solved the need to transform multiple coincident inputs into serviceable outputs before neocortex appeared in mammals. Why then do phylogenetically more recent cortices need multiple pyramidal cell layers? A simple answer is that more neurones can compute more complex functions. The dentate gyrus and hippocampal CA regions-which might be seen as hippocampal antecedents of neocortical layers-lie side by side, albeit around a tight bend. Were the millions of cells of rat neocortex arranged in like fashion, the surface area of the CA pyramidal cell layers would be some 40 times larger. Even if evolution had managed to fold this immense sheet into the space available, the distances between neurones that needed to be synaptically connected would be huge and to maintain the speed of information transfer, massive, myelinated fiber tracts would be needed. How much more practical to stack the "cells that fire and wire together" into narrow columns, while retaining the mechanisms underlying the extraordinary precision with which circuits form. This demonstrably efficient arrangement presents us with challenges, however, not the least being to categorize the baffling array of neuronal subtypes in each of five "pyramidal layers." If we imagine the puzzle posed by this bewildering jumble of apical dendrites, basal dendrites and axons, from many different pyramidal and interneuronal classes, that is encountered by a late-arriving interneurone insinuating itself into a functional circuit, we can perhaps begin to understand why definitive classification, covering every aspect of each neurone's structure and function, is such a challenge. Here, we summarize and compare the development of these two cortices, the properties of their neurones, the circuits they form and the ordered, unidirectional flow of information from one hippocampal region, or one neocortical layer, to another.
RESUMO
The establishment of cell-cell contacts between presynaptic GABAergic neurons and their postsynaptic targets initiates the process of GABAergic synapse formation. GABAA receptors (GABAARs), the main postsynaptic receptors for GABA, have been recently demonstrated to act as synaptogenic proteins that can single-handedly induce the formation and functional maturation of inhibitory synapses. To establish how the subunit composition of GABAARs influences their ability to induce synaptogenesis, a co-culture model system incorporating GABAergic medium spiny neurons and the HEK293 cells, stably expressing different combinations of receptor subunits, was developed. Analyses of HEK293 cell innervation by medium spiny neuron axons using immunocytochemistry, activity-dependent labeling, and electrophysiology have indicated that the γ2 subunit is required for the formation of active synapses and that its effects are influenced by the type of α/ß subunits incorporated into the functional receptor. To further characterize this process, the large N-terminal extracellular domains (ECDs) of α1, α2, ß2, and γ2 subunits were purified using the baculovirus/Sf9 cell system. When these proteins were applied to the co-cultures of MSNs and α1/ß2/γ2-expressing HEK293 cells, the α1, ß2, or γ2 ECD each caused a significant reduction in contact formation, in contrast to the α2 ECD, which had no effect. Together, our experiments indicate that the structural role of GABAARs in synaptic contact formation is determined by their subunit composition, with the N-terminal ECDs of each of the subunits directly participating in interactions between the presynaptic and postsynaptic elements, suggesting the these interactions are multivalent and specific.
Assuntos
Receptores de GABA-A/metabolismo , Sinapses/metabolismo , Animais , Membrana Celular/metabolismo , Técnicas de Cocultura , Espaço Extracelular/metabolismo , Feminino , Glicosilação , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Gravidez , Receptores de GABA-A/químicaRESUMO
Neurons of the cerebellar nuclei (CbN) transmit cerebellar signals to premotor areas. The cerebellum expresses several autism-linked genes, including GABRB3, which encodes GABAA receptor ß3 subunits and is among the maternal alleles deleted in Angelman syndrome. We tested how this Gabrb3 m-/p+ mutation affects CbN physiology in mice, separating responses of males and females. Wild-type mice showed sex differences in synaptic excitation, inhibition, and intrinsic properties. Relative to females, CbN cells of males had smaller synaptically evoked mGluR1/5-dependent currents, slower Purkinje-mediated IPSCs, and lower spontaneous firing rates, but rotarod performances were indistinguishable. In mutant CbN cells, IPSC kinetics were unchanged, but mutant males, unlike females, showed enlarged mGluR1/5 responses and accelerated spontaneous firing. These changes appear compensatory, since mutant males but not females performed indistinguishably from wild-type siblings on the rotarod task. Thus, sex differences in cerebellar physiology produce similar behavioral output, but provide distinct baselines for responses to mutations.
Assuntos
Transtorno Autístico/fisiopatologia , Cerebelo/fisiologia , Mutação , Receptores de GABA-A/metabolismo , Fatores Sexuais , Transmissão Sináptica , Animais , Transtorno Autístico/epidemiologia , Transtorno Autístico/genética , Feminino , Masculino , Camundongos , Receptores de GABA-A/genética , Receptores de Neurotransmissores/metabolismoRESUMO
The CA2 region of the mammalian hippocampus is a unique region with its own distinctive properties, inputs and pathologies. Disruption of inhibitory circuits in this region appears to be linked with the pathology of specific psychiatric disorders, promoting interest in its local circuitry, its role in hippocampal function and its dysfunction in disease. In previous studies, CA2 interneurons, including a novel subclass of CA2 dendrite-preferring interneurons that has not been identified in other CA regions, have been shown to display physiological, synaptic and morphological properties unique to this sub-field and may therefore play a crucial role in the hippocampal circuitry. The distributions of immuno-labeled interneurons in dorsal CA2 were studied and compared with those of interneurons in CA1 and CA3. Like those in CA1 and CA3, the somata of CA2 parvalbumin-immunoperoxidase-labeled interneurons were located primarily in Stratum Pyramidale (SP) and Stratum Oriens (SO), with very few cells in Stratum Radiatum (SR) and none in Stratum Lacunosum Moleculare (SLM). There was, however, a greater proportion of GAD-positive cells were immunopositive for PV in SP in CA2 than in CA1 or CA3. CA2 SP also contained a larger density of somatostatin-, calbindin-, and VIP-immunopositive somata than CA1 and/or CA3. Like those in CA1 and CA3, CCK-immunopositive somata in CA2 were mostly located in SR. Reelin- and NPY- immunolabeled cell bodies were located in all layers of the three CA regions. However, a higher density of Reelin-positive somata was found in SP and SR of CA2 than in CA1 or CA3.
RESUMO
The mechanisms that underlie the selection of an inhibitory GABAergic axon's postsynaptic targets and the formation of the first contacts are currently unknown. To determine whether expression of GABAA receptors (GABAA Rs) themselves--the essential functional postsynaptic components of GABAergic synapses--can be sufficient to initiate formation of synaptic contacts, a novel co-culture system was devised. In this system, the presynaptic GABAergic axons originated from embryonic rat basal ganglia medium spiny neurones, whereas their most prevalent postsynaptic targets, i.e., α1/ß2/γ2-GABAA Rs, were expressed constitutively in a stably transfected human embryonic kidney 293 (HEK293) cell line. The first synapse-like contacts in these co-cultures were detected by colocalization of presynaptic and postsynaptic markers within 2 h. The number of contacts reached a plateau at 24 h. These contacts were stable, as assessed by live cell imaging; they were active, as determined by uptake of a fluorescently labelled synaptotagmin vesicle-luminal domain-specific antibody; and they supported spontaneous and action potential-driven postsynaptic GABAergic currents. Ultrastructural analysis confirmed the presence of characteristics typical of active synapses. Synapse formation was not observed with control or N-methyl-d-aspartate receptor-expressing HEK293 cells. A prominent increase in synapse formation and strength was observed when neuroligin-2 was co-expressed with GABAA Rs, suggesting a cooperative relationship between these proteins. Thus, in addition to fulfilling an essential functional role, postsynaptic GABAA Rs can promote the adhesion of inhibitory axons and the development of functional synapses.
Assuntos
Axônios/fisiologia , Receptores de GABA-A/metabolismo , Sinapses/fisiologia , Potenciais Sinápticos , Potenciais de Ação , Animais , Axônios/metabolismo , Gânglios da Base/citologia , Gânglios da Base/crescimento & desenvolvimento , Gânglios da Base/fisiologia , Moléculas de Adesão Celular Neuronais/metabolismo , Processos de Crescimento Celular , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Células HEK293 , Humanos , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Sprague-Dawley , Sinapses/metabolismoRESUMO
Gap junctions between inhibitory neurones in cortical regions have been well documented over the years. However, although the presence of electrical coupling between pyramidal cells has been supported by dye-coupling and recordings of fast prepotentials called 'spikelets', direct evidence for such coupling remains sparse. Electrical coupling between pyramids has however been shown to play a significant role in oscillatory network activity, spatial exploration and learning and memory and full characterization of these synapses are overdue. In this review, an overview of the known properties of these electrical synapses is given, focusing on a study in the CA1 region of the hippocampus. This article is part of a Special Issue entitled Electrical Synapses.
Assuntos
Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Neurônios/fisiologia , Axônios/fisiologia , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Conexinas/fisiologia , Dendritos/fisiologia , Humanos , Aprendizagem/fisiologia , Memória/fisiologia , Células Piramidais/fisiologiaRESUMO
The CA2 region of the hippocampus has distinctive properties and inputs and may be linked with the pathology of specific psychiatric and neurological disorders. It is, therefore, important to understand CA2 circuitry and its involvement in the circuitry of the hippocampus. Properties of CA2 basket cells have been reported. However, other classes of CA2 interneurones with cell bodies located in stratum pyramidale remained to be described. In this study, the unusual axonal arbors of a novel subclass of dendrite-preferring CA2 interneurones whose somata are located in the pyramidal cell layer was revealed following intracellular recordings and biocytin labeling. One to four apical dendrites emerged from the soma, branched in stratum radiatum (SR) forming a tuft, but rarely penetrated stratum lacunosum-moleculare (SLM). One or two basal dendrites branched close to the soma, the branches extended through stratum oriens (SO) and often reached the alveus. Unlike CA2 bistratified cells, the axons of these cells arborized almost exclusively in SR with few, if any, branches extending to stratum pyramidale (SP), SO, or SLM. These interneurones again, unlike bistratified cells, were immunonegative for parvalbumin and cholecystokinin. Electrophysiologically, they were similar to some CA2 basket and bistratified cells in that they presented a "sag" in response to hyperpolarizing current injections and displayed spike frequency adaptation. They targeted the apical dendrites of neighboring CA2 pyramidal cells and received inputs from them.
Assuntos
Região CA2 Hipocampal/citologia , Interneurônios/citologia , Células Piramidais/citologia , Potenciais de Ação/fisiologia , Animais , Axônios/metabolismo , Região CA2 Hipocampal/metabolismo , Colecistocinina/imunologia , Colecistocinina/metabolismo , Dendritos/metabolismo , Humanos , Imuno-Histoquímica , Interneurônios/metabolismo , Masculino , Parvalbuminas/imunologia , Parvalbuminas/metabolismo , Técnicas de Patch-Clamp/métodos , Células Piramidais/metabolismo , Ratos , Ratos Wistar , SinapsesRESUMO
There is a growing recognition that the CA2 region of the hippocampus has its own distinctive properties, inputs, and pathologies. The dendritic and axonal patterns of some interneurons in this region are also strikingly different from those described previously in CA1 and CA3. The local circuitry in this region, however, had yet to be studied in detail. Accordingly, using dual intracellular recordings and biocytin-filling, excitatory and inhibitory connections involving CA2 parvalbumin-positive basket cells were characterized for the first time. CA2 basket cells targeted neighboring pyramidal cells and received excitatory inputs from them. CA2 basket cells that resembled those in CA1 with a fast spiking behavior and dendritic tree confined to the region of origin received depressing excitatory postsynaptic potentials (EPSPs). In contrast, unlike CA1 basket cells but like CA1 Oriens-Lacunosum Moleculare (OLM) cells, the majority of CA2 basket cells had horizontally oriented dendrites in Stratum Oriens (SO), which extended into all three CA subfields, had an adapting firing pattern, presented a "sag" in their voltage responses to hyperpolarizing current injection, and received facilitating EPSPs. The expression of I(h) did not influence the EPSP time courses and paired pulse ratios (PPR). Estimates of the probability of release (p) for the depressing and facilitating EPSPs were correlated with the PPR. Connections with low probabilities of release had higher PPR. Quantal amplitude (q) for the facilitating connections was larger than q at depressing inputs onto fast spiking basket cells.
Assuntos
Região CA2 Hipocampal/citologia , Região CA2 Hipocampal/fisiologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Parvalbuminas/fisiologia , Animais , Biomarcadores/metabolismo , Região CA2 Hipocampal/metabolismo , Interneurônios/metabolismo , Interneurônios/fisiologia , Masculino , Inibição Neural/fisiologia , Neurotransmissores/metabolismo , Técnicas de Cultura de Órgãos , Parvalbuminas/metabolismo , Células Piramidais/citologia , Células Piramidais/metabolismo , Células Piramidais/fisiologia , RatosRESUMO
gamma-Aminobutyric acid type A (GABA(A)) receptors, a family of Cl(-)-permeable ion channels, mediate fast synaptic inhibition as postsynaptically enriched receptors for gamma-aminobutyric acid at GABAergic synapses. Here we describe an alternative type of inhibition mediated by GABA(A) receptors present on neocortical glutamatergic nerve terminals and examine the underlying signaling mechanism(s). By monitoring the activity of the presynaptic CaM kinase II/synapsin I signaling pathway in isolated nerve terminals, we demonstrate that GABA(A) receptor activation correlated with an increase in basal intraterminal [Ca(2+)](i). Interestingly, this activation of GABA(A) receptors resulted in a reduction of subsequent depolarization-evoked Ca(2+) influx, which thereby led to an inhibition of glutamate release. To investigate how the observed GABA(A) receptor-mediated modulation operates, we determined the sensitivity of this process to the Na-K-2Cl cotransporter 1 antagonist bumetanide, as well as substitution of Ca(2+) with Ba(2+), or Ca(2+)/calmodulin inhibition by W7. All of these treatments abolished the modulation by GABA(A) receptors. Application of selective antagonists of voltage-gated Ca(2+) channels (VGCCs) revealed that the GABA(A) receptor-mediated modulation of glutamate release required the specific activity of L- and R-type VGCCs. Crucially, the inhibition of release by these receptors was abolished in terminals isolated from R-type VGCC knock-out mice. Together, our results indicate that a functional coupling between nerve terminal GABA(A) receptors and L- or R-type VGCCs is mediated by Ca(2+)/calmodulin-dependent signaling. This mechanism provides a GABA-mediated control of glutamatergic synaptic activity by a direct inhibition of glutamate release.
Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Calmodulina/metabolismo , Ácido Glutâmico/metabolismo , Receptores de GABA-A/metabolismo , Sinaptossomos/metabolismo , Animais , Bário/farmacologia , Bumetanida/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Ratos , Ratos Sprague-Dawley , Inibidores de Simportadores de Cloreto de Sódio e Potássio , Sinapsinas/metabolismoRESUMO
The hippocampal cornu ammonis 2 (CA2) region is unique in being the only CA region receiving inputs from the hypothalamic supramammillary nucleus, of importance in modulating hippocampal theta rhythm, and is seizure resistant in temporal lobe epilepsy. CA2 has, however, been little studied, possibly because of its small size and difficulty encountered in defining its borders. To investigate the properties of CA2 interneurons, intracellular recordings with biocytin filling were made in adult hippocampal slices. Two types of basket cells were identified. A minority resembled those in CA1, with fast spiking behavior, vertically oriented dendrites, and axons confined to the region of origin. In contrast, the majority of parvalbumin-immunopositive CA2 basket and bistratified cells had long, horizontally oriented, sparsely spiny dendrites extending into all CA subfields in stratum oriens, adapting firing patterns and a pronounced "sag" in voltage responses to hyperpolarizing current, indicative of I(h). Broad CA2 basket cells innervated all three CA subfields and could thus provide CA1 and CA2 with feedforward and CA3 with feedback inhibition. In contrast, CA2 bistratified cell axons displayed striking subfield preference, innervating stratum oriens and stratum radiatum of CA2 and CA1 but stopping abruptly at the CA2/CA3 border, implying feedforward inhibition of CA2 and CA1. These unique features suggest that CA2 is more than a transitional region between CA1 and CA3. The pronounced slow sag current of many CA2 interneurons may contribute to coordination of pyramidal cell firing during theta, whereas the fast spiking behavior of a smaller population of interneurons supports more localized gamma.
Assuntos
Hipocampo/citologia , Hipocampo/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Fatores Etários , Animais , Axônios/fisiologia , Dendritos/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Ratos WistarRESUMO
The properties of the connections made by the axons of pyramidal cells with cortico-thalamic (CT)-like morphology with a range of postsynaptic layer 6 targets were studied with dual intracellular recordings in slices of adult rat and cat neocortex. The cells were filled with biocytin and identified morphologically and, where appropriate, immunofluorescently. CT-like pyramids contacted interneurons with a very high probability (up to 1:2) but contacted other layer 6 pyramidal cells only rarely (approximately 1:80). The excitatory postsynaptic potentials (EPSPs) that they elicited both in pyramidal cells and in a variety of types of interneurons (including those immunopositive for parvalbumin and for somatostatin) facilitated, the second EPSP being larger than the first over a range of interspike intervals. Facilitation was not, however, maximal at the shortest intervals; in fact, depression was apparent at some connections at short interspike intervals. Facilitation in the majority of connections peaked at intervals of 25-35 ms and then declined slowly. Nor did these connections display the augmentation typical of many other strongly facilitating connections. Third EPSPs were smaller on average than second EPSPs, and fourth and subsequent EPSPs could be depressed (relative to first EPSPs). The properties of the outputs of these CT-like pyramidal cells are therefore quite distinct from those of other pyramidal cells, both within layer 6 and in other layers, possibly reflecting their unique role as both first order thalamo-cortical recipient and cortico-thalamic output neurons.
Assuntos
Córtex Cerebral/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Interneurônios/fisiologia , Potenciação de Longa Duração/fisiologia , Vias Neurais/fisiologia , Células Piramidais/fisiologia , Tálamo/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Gatos , Córtex Cerebral/citologia , Interneurônios/citologia , Masculino , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Vias Neurais/citologia , Plasticidade Neuronal/fisiologia , Células Piramidais/citologia , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/fisiologia , Tálamo/citologiaRESUMO
Recently, intense interest has focussed on electrical coupling between interneurones in cortical regions and their contributions towards oscillatory network activity. Despite mounting circumstantial evidence that pyramidal cells are also coupled, the paucity of direct evidence has made this controversial. Dual intracellular recordings from pairs of cortical and hippocampal pyramids demonstrated strong, but sparse coupling. Approximately 70% of CA1 pyramids close to the stratum radiatum border were coupled to another pyramid, but only to one or two of their very closest neighbours. On average 25% of the steady state and 10% of the peak action potential voltage change in one cell transferred to the other, supporting synchrony and promoting burst firing. The very high incidence of convergent inputs from coupled pyramids onto single targets provided additional evidence that 'spikelets' reflected full action potentials in a coupled cell, since the EPSPs activated by APs and by 'spikelets' had significantly different amplitude distributions.