Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 949: 174937, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39067598

RESUMO

BACKGROUND: Day-to-day variation in the measurement of SARS-CoV-2 in wastewater can challenge public health interpretation. We assessed a Bayesian smoothing and forecasting method previously used for surveillance and short-term projection of COVID-19 cases, hospitalizations, and deaths. METHODS: SARS-CoV-2 viral measurement from the sewershed in Ottawa, Canada, sampled at the municipal wastewater treatment plant from July 1, 2020, to February 15, 2022, was used to assess and internally validate measurement averaging and prediction. External validation was performed using viral measurement data from influent wastewater samples from 15 wastewater treatment plants and municipalities across Ontario. RESULTS: Plots of SARS-CoV-2 viral measurement over time using Bayesian smoothing visually represented distinct COVID-19 "waves" described by case and hospitalization data in both initial (Ottawa) and external validation in 15 Ontario communities. The time-varying growth rate of viral measurement in wastewater samples approximated the growth rate observed for cases and hospitalization. One-week predicted viral measurement approximated the observed viral measurement throughout the assessment period from December 23, 2020, to August 8, 2022. An uncalibrated model showed underprediction during rapid increases in viral measurement (positive growth) and overprediction during rapid decreases. After recalibration, the model showed a close approximation between observed and predicted estimates. CONCLUSION: Bayesian smoothing of wastewater surveillance data of SARS-CoV-2 allows for accurate estimates of COVID-19 growth rates and one- and two-week forecasting of SARS-CoV-2 in wastewater for 16 municipalities in Ontario, Canada. Further assessment is warranted in other communities representing different sewersheds and environmental conditions.


Assuntos
Teorema de Bayes , COVID-19 , SARS-CoV-2 , Águas Residuárias , Águas Residuárias/virologia , COVID-19/epidemiologia , Ontário/epidemiologia , Humanos , Previsões , Vigilância Epidemiológica Baseada em Águas Residuárias , Monitoramento Ambiental/métodos
2.
Sci Rep ; 14(1): 3728, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355869

RESUMO

Wastewater surveillance of coronavirus disease 2019 (COVID-19) commonly applies reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to quantify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA concentrations in wastewater over time. In most applications worldwide, maximal sensitivity and specificity of RT-qPCR has been achieved, in part, by monitoring two or more genomic loci of SARS-CoV-2. In Ontario, Canada, the provincial Wastewater Surveillance Initiative reports the average copies of the CDC N1 and N2 loci normalized to the fecal biomarker pepper mild mottle virus. In November 2021, the emergence of the Omicron variant of concern, harboring a C28311T mutation within the CDC N1 probe region, challenged the accuracy of the consensus between the RT-qPCR measurements of the N1 and N2 loci of SARS-CoV-2. In this study, we developed and applied a novel real-time dual loci quality assurance and control framework based on the relative difference between the loci measurements to the City of Ottawa dataset to identify a loss of sensitivity of the N1 assay in the period from July 10, 2022 to January 31, 2023. Further analysis via sequencing and allele-specific RT-qPCR revealed a high proportion of mutations C28312T and A28330G during the study period, both in the City of Ottawa and across the province. It is hypothesized that nucleotide mutations in the probe region, especially A28330G, led to inefficient annealing, resulting in reduction in sensitivity and accuracy of the N1 assay. This study highlights the importance of implementing quality assurance and control criteria to continually evaluate, in near real-time, the accuracy of the signal produced in wastewater surveillance applications that rely on detection of pathogens whose genomes undergo high rates of mutation.


Assuntos
Vigilância Epidemiológica Baseada em Águas Residuárias , Águas Residuárias , Alelos , Mutação , Ontário/epidemiologia , SARS-CoV-2/genética , RNA Viral/genética
4.
Environ Sci Pollut Res Int ; 31(4): 5242-5253, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38112868

RESUMO

Wastewater surveillance (WWS) of SARS-CoV-2 has become a crucial tool for monitoring COVID-19 cases and outbreaks. Previous studies have indicated that SARS-CoV-2 RNA measurement from testing solid-rich primary sludge yields better sensitivity compared to testing wastewater influent. Furthermore, measurement of pepper mild mottle virus (PMMoV) signal in wastewater allows for precise normalization of SARS-CoV-2 viral signal based on solid content, enhancing disease prevalence tracking. However, despite the widespread adoption of WWS, a knowledge gap remains regarding the impact of ferric sulfate coagulation, commonly used in enhanced primary clarification, the initial stage of wastewater treatment where solids are sedimented and removed, on SARS-CoV-2 and PMMoV quantification in wastewater-based epidemiology. This study examines the effects of ferric sulfate addition, along with the associated pH reduction, on the measurement of SARS-CoV-2 and PMMoV viral measurements in wastewater primary clarified sludge through jar testing. Results show that the addition of Fe3+ concentrations in the conventional 0 to 60 mg/L range caused no effect on SARS-CoV-2 N1 and N2 gene region measurements in wastewater solids. However, elevated Fe3+ concentrations were shown to be associated with a statistically significant increase in PMMoV viral measurements in wastewater solids, which consequently resulted in the underestimation of PMMoV-normalized SARS-CoV-2 viral signal measurements (N1 and N2 copies/copies of PMMoV). The observed pH reduction from coagulant addition did not contribute to the increased PMMoV measurements, suggesting that this phenomenon arises from the partitioning of PMMoV viral particles into wastewater solids.


Assuntos
COVID-19 , Compostos Férricos , Tobamovirus , Águas Residuárias , Humanos , SARS-CoV-2 , Esgotos , RNA Viral , Vigilância Epidemiológica Baseada em Águas Residuárias
5.
Front Public Health ; 11: 1316531, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38283294

RESUMO

Respiratory syncytial virus (RSV) is the leading viral cause of childhood bronchiolitis and pneumonia causing over 3 million hospitalizations and 100,000 deaths in children under 5 years of age annually. Wastewater-based surveillance (WBS) has proven an effective early warning system for high-consequence pathogens, including SARS-CoV-2, polio, mpox, and influenza, but has yet to be fully leveraged for RSV surveillance. A model predicated on the Canadian province of Ontario demonstrates that implementation of a WBS system can potentially result in significant cost savings and clinical benefits when guiding an RSV preventive program with a long-acting monoclonal antibody. A network of integrated WBS initiatives offers the opportunity to help minimize the devastating global burden of RSV in children by optimizing the timing of preventive measures and we strongly advocate that its benefits continue to be explored.


Assuntos
Infecções por Vírus Respiratório Sincicial , Humanos , Criança , Pré-Escolar , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Infecções por Vírus Respiratório Sincicial/epidemiologia , Vigilância Epidemiológica Baseada em Águas Residuárias , Vírus Sinciciais Respiratórios , Anticorpos Monoclonais , Ontário/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA