Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Oral Maxillofac Surg ; 79(4): 787-798.e2, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33434518

RESUMO

PURPOSE: The gold standard for bone regeneration of bone deficiencies is still an autologous bone graft, which has considerable disadvantages; namely, the need for a second major surgery and the limited volume of bone available for harvesting. BonoFill (BF) is a novel, tissue-engineered, bone graft with intrinsic osteoinductive, osteoconductive, and osteogenic properties, consisting of the patient's own adipose tissue-derived mesenchymal stem cells, attached to hydroxyapatite particles. Here, we present the safety and efficacy results of BF first-in-human clinical study for maxillofacial bone tissue regeneration. MATERIALS AND METHODS: Eleven eligible male and female subjects, aged 49-65 years, were enrolled into the clinical study in 2 clinical indications: Bone augmentation and bone void grafting in the jaws. Clinical follow-up was performed throughout a period of 6 months after BF treatment and included clinical examination, blood tests, CT scans, and biopsies collected from the transplantation site to assess chronic bone infection, changes in complete blood count, and adequate bone augmentation for implant placement. RESULTS: The study results demonstrated that BF promoted adequate bone tissue regeneration without complications. Per our evaluation, there were no incidents of chronic bone infection, or significant changes in complete blood count, and the patients reported overall good health for the duration of the study. At trial end, in the sinus augmentation indication, the BF treated sites residual bone was augmented at an average of 6.36 mm (Δ new bone, n = 10) and the total bone height at the treated area was on average 11.44 mm (n = 10). In the indication of filling of bone voids, the patient's average residual bone height of 2.91 mm was 15.76 mm (n = 1) at trial end. CONCLUSIONS: BF treatment was shown to be safe and resulted in newly generated bone, which provided adequate bone height for placement of dental implants. Thus, BF is a promising novel autologous bone graft for bone tissue repair.


Assuntos
Aumento do Rebordo Alveolar , Implantes Dentários , Levantamento do Assoalho do Seio Maxilar , Idoso , Regeneração Óssea , Transplante Ósseo , Implantação Dentária Endóssea , Feminino , Humanos , Masculino , Mandíbula/diagnóstico por imagem , Mandíbula/cirurgia , Seio Maxilar/cirurgia , Pessoa de Meia-Idade
2.
J Orthop Surg Res ; 14(1): 198, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31262323

RESUMO

BACKGROUND: Adipose tissue-derived mesenchymal stem cells (AT-MSCs) are one of the most potent adult stem cells, capable of differentiating into bone, cartilage, adipose, muscle, and others. An innovative autologous AT-MSC-derived cell-based product (BonoFill-II) for bone tissue regeneration was developed to be suited as a bone graft for segmental bone defects. METHODS: BonoFill-II was transplanted into 8 sheep with 3.2-cm full cortex segmental defect formed in the tibia. Bone regeneration was followed by X-ray radiographs for 12 weeks. At experiment termination, the healed tibia bones were analyzed by computed tomography, histology, and mechanical tests. RESULTS: Our results indicate that one dose of BonoFill-II injectable formula led to an extensive bone growth within the transplantation site and to a complete closure of the critical gap in the sheep's tibia in a relatively short time (8-12 weeks), with no inflammation and no other signs of graft rejection. This new and innovative product opens new prospects for the treatment of long bone defects. CONCLUSIONS: Injection of BonoFill-II (an innovative autologous cell therapy product for bone tissue regeneration) into a critical size segmental defect model (3.2 cm), generated in the sheep tibia, achieved full bridging of the gap in an extremely short period (8-12 weeks).


Assuntos
Regeneração Óssea/fisiologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/fisiologia , Tíbia/diagnóstico por imagem , Tíbia/fisiologia , Transplante Autólogo/métodos , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Feminino , Humanos , Distribuição Aleatória , Ovinos , Tíbia/lesões
3.
J Tissue Eng Regen Med ; 12(1): e130-e141, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28382732

RESUMO

Human adipose-derived microvascular endothelial cells (HAMEC) and mesenchymal stem cells (MSC) have been shown to bear angiogenic and vasculogenic capabilities. We hypothesize that co-culturing HAMEC:MSC on a porous biodegradable scaffold in vitro, later implanted as a graft around femoral blood vessels in a rat, will result in its vascularization by host vessels, creating a functional vascular flap that can effectively treat a range of large full-thickness soft tissue defects. HAMEC were co-cultured with MSC on polymeric three-dimensional porous constructs. Grafts were then implanted around the femoral vessels of a rat. To ensure vessel sprouting from the main femoral vessels, grafts were pre-isolated from the surrounding tissue. Graft vascularization was monitored to confirm full vascularization before flap transfer. Flaps were then transferred to treat both abdominal wall and exposed bone and tendon of an ankle defects. Flaps were analysed to determine vascular properties in terms of maturity, functionality and survival of implanted cells. Findings show that pre-isolated grafts bearing the HAMEC:MSC combination promoted formation of highly vascularized flaps, which were better integrated in both defect models. The results of this study show the essentiality of a specific adipose-derived cell combination in successful graft vascularization and integration, two processes crucial for flap survival. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Tecido Adiposo/citologia , Células-Tronco Mesenquimais/citologia , Microvasos/citologia , Neovascularização Fisiológica , Engenharia Tecidual/métodos , Parede Abdominal/irrigação sanguínea , Animais , Prótese Vascular , Células Endoteliais/citologia , Feminino , Humanos , Implantes Experimentais , Ratos Wistar , Retalhos Cirúrgicos/irrigação sanguínea , Alicerces Teciduais
4.
Stem Cell Res Ther ; 7: 5, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26753517

RESUMO

BACKGROUND: Adipose-derived mesenchymal stem cells (MSCs) have been gaining fame mainly due to their vast clinical potential, simple isolation methods and minimal donor site morbidity. Adipose-derived MSCs and microvascular endothelial cells have been shown to bear angiogenic and vasculogenic capabilities. We hypothesized that co-culture of human adipose-derived MSCs with human adipose-derived microvascular endothelial cells (HAMECs) will serve as an effective cell pair to induce angiogenesis and vessel-like network formation in three-dimensional scaffolds in vitro. METHODS: HAMECs or human umbilical vein endothelial cells (HUVECs) were co-cultured on scaffolds with either MSCs or human neonatal dermal fibroblasts. Cells were immunofluorescently stained within the scaffolds at different time points post-seeding. Various analyses were performed to determine vessel length, complexity and degree of maturity. RESULTS: The HAMEC:MSC combination yielded the most organized and complex vascular elements within scaffolds, and in the shortest period of time, when compared to the other tested cell combinations. These differences were manifested by higher network complexity, more tube alignment and higher α-smooth muscle actin expression. Moreover, these generated microvessels further matured and developed during the 14-day incubation period within the three-dimensional microenvironment. CONCLUSIONS: These data demonstrate optimal vascular network formation upon co-culture of microvascular endothelial cells and adipose-derived MSCs in vitro and constitute a significant step in appreciation of the potential of microvascular endothelial cells and MSCs in different tissue engineering applications that can also be advantageous in in vivo studies.


Assuntos
Células Progenitoras Endoteliais/fisiologia , Células Endoteliais da Veia Umbilical Humana/fisiologia , Tecido Adiposo/citologia , Células Cultivadas , Técnicas de Cocultura , Meios de Cultura/química , Endotélio Vascular/citologia , Endotélio Vascular/fisiologia , Humanos , Ácido Láctico/química , Neovascularização Fisiológica , Poliésteres , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros/química , Engenharia Tecidual , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA