Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38794506

RESUMO

The damping of spruce wood is analysed at different moisture content levels for the first three vibration modes of tangentially and radially vibrating samples. Two methods were used to determine the damping. The first was the vibration envelope fitting as an improved version of the well-known logarithmic decrement, and the second was the newer and recently increasingly used wavelet transform. Both methods showed that the damping of spruce wood first decreases and then increases with moisture content, with the damping in the first vibration mode being about 9% higher in the radial direction than in the tangential direction. In the second and third vibration modes, the damping in the tangential direction was higher than in the radial direction by about 10% and 8.8%, respectively. The measured damping factors from the envelope fitting had, on average, 15.9% higher values than those from the wavelet transform. It can be concluded from the results that the wavelet transform is more accurate for determining the damping factor, as it enables the decoupling of multi-degree of freedom systems if mode coupling is present.

2.
Polymers (Basel) ; 13(24)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34961001

RESUMO

In composite materials, the use of failure criteria is necessary to determine the failure forces. Various failure criteria are known, from the simplest ones that compare individual stresses with the corresponding strength, to more complex ones that take into account the sign and direction of the stress, as well as mutual interactions of the acting stresses. This study investigates the application of the maximum stress, Tsai-Hill, Tsai-Wu, Puck, Hoffman and Hashin criteria to beech plywood made from a series of plies of differently oriented beech veneers. Specimens were cut from the manufactured boards at various angles and loaded by bending to failure. The mechanical properties of the beech veneer were also determined. The specimens were modelled using the finite element method with a composite modulus and considering the different failure criteria where the failure forces were calculated and compared with the measured values. It was found that the calculated forces based on all failure criteria were lower than those measured experimentally. The forces determined using the maximum stress criterion showed the best agreement between the calculated and measured forces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA