Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Sci Rep ; 14(1): 3522, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347017

RESUMO

In medical imaging, accurate segmentation is crucial to improving diagnosis, treatment, or both. However, navigating the multitude of available architectures for automatic segmentation can be overwhelming, making it challenging to determine the appropriate type of architecture and tune the most crucial parameters during dataset optimisation. To address this problem, we examined and refined seven distinct architectures for segmenting the liver, as well as liver tumours, with a restricted training collection of 60 3D contrast-enhanced magnetic resonance images (CE-MRI) from the ATLAS dataset. Included in these architectures are convolutional neural networks (CNNs), transformers, and hybrid CNN/transformer architectures. Bayesian search techniques were used for hyperparameter tuning to hasten convergence to the optimal parameter mixes while also minimising the number of trained models. It was unexpected that hybrid models, which typically exhibit superior performance on larger datasets, would exhibit comparable performance to CNNs. The optimisation of parameters contributed to better segmentations, resulting in an average increase of 1.7% and 5.0% in liver and tumour segmentation Dice coefficients, respectively. In conclusion, the findings of this study indicate that hybrid CNN/transformer architectures may serve as a practical substitute for CNNs even in small datasets. This underscores the significance of hyperparameter optimisation.


Assuntos
Processamento de Imagem Assistida por Computador , Neoplasias Hepáticas , Humanos , Teorema de Bayes , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias Hepáticas/diagnóstico por imagem
2.
Med Image Anal ; 92: 103066, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141453

RESUMO

Fetoscopy laser photocoagulation is a widely adopted procedure for treating Twin-to-Twin Transfusion Syndrome (TTTS). The procedure involves photocoagulation pathological anastomoses to restore a physiological blood exchange among twins. The procedure is particularly challenging, from the surgeon's side, due to the limited field of view, poor manoeuvrability of the fetoscope, poor visibility due to amniotic fluid turbidity, and variability in illumination. These challenges may lead to increased surgery time and incomplete ablation of pathological anastomoses, resulting in persistent TTTS. Computer-assisted intervention (CAI) can provide TTTS surgeons with decision support and context awareness by identifying key structures in the scene and expanding the fetoscopic field of view through video mosaicking. Research in this domain has been hampered by the lack of high-quality data to design, develop and test CAI algorithms. Through the Fetoscopic Placental Vessel Segmentation and Registration (FetReg2021) challenge, which was organized as part of the MICCAI2021 Endoscopic Vision (EndoVis) challenge, we released the first large-scale multi-center TTTS dataset for the development of generalized and robust semantic segmentation and video mosaicking algorithms with a focus on creating drift-free mosaics from long duration fetoscopy videos. For this challenge, we released a dataset of 2060 images, pixel-annotated for vessels, tool, fetus and background classes, from 18 in-vivo TTTS fetoscopy procedures and 18 short video clips of an average length of 411 frames for developing placental scene segmentation and frame registration for mosaicking techniques. Seven teams participated in this challenge and their model performance was assessed on an unseen test dataset of 658 pixel-annotated images from 6 fetoscopic procedures and 6 short clips. For the segmentation task, overall baseline performed was the top performing (aggregated mIoU of 0.6763) and was the best on the vessel class (mIoU of 0.5817) while team RREB was the best on the tool (mIoU of 0.6335) and fetus (mIoU of 0.5178) classes. For the registration task, overall the baseline performed better than team SANO with an overall mean 5-frame SSIM of 0.9348. Qualitatively, it was observed that team SANO performed better in planar scenarios, while baseline was better in non-planner scenarios. The detailed analysis showed that no single team outperformed on all 6 test fetoscopic videos. The challenge provided an opportunity to create generalized solutions for fetoscopic scene understanding and mosaicking. In this paper, we present the findings of the FetReg2021 challenge, alongside reporting a detailed literature review for CAI in TTTS fetoscopy. Through this challenge, its analysis and the release of multi-center fetoscopic data, we provide a benchmark for future research in this field.


Assuntos
Transfusão Feto-Fetal , Placenta , Feminino , Humanos , Gravidez , Algoritmos , Transfusão Feto-Fetal/diagnóstico por imagem , Transfusão Feto-Fetal/cirurgia , Transfusão Feto-Fetal/patologia , Fetoscopia/métodos , Feto , Placenta/diagnóstico por imagem
3.
J Acoust Soc Am ; 154(3): 1757-1769, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721402

RESUMO

In underwater acoustic (UWA) communications, channels often exhibit a clustered-sparse structure, wherein most of the channel impulse responses are near zero, and only a small number of nonzero taps assemble to form clusters. Several algorithms have used the time-domain sparse characteristic of UWA channels to reduce the complexity of channel estimation and improve the accuracy. Employing the clustered structure to enhance channel estimation performance provides another promising research direction. In this work, a deep learning-based channel estimation method for UWA orthogonal frequency division multiplexing (OFDM) systems is proposed that leverages the clustered structure information. First, a cluster detection model based on convolutional neural networks is introduced to detect the cluster of UWA channels. This method outperforms the traditional Page test algorithm with better accuracy and robustness, particularly in low signal-to-noise ratio conditions. Based on the cluster detection model, a cluster-aware distributed compressed sensing channel estimation method is proposed, which reduces the noise-induced errors by exploiting the joint sparsity between adjacent OFDM symbols and limiting the search space of channel delay spread. Numerical simulation and sea trial results are provided to illustrate the superior performance of the proposed approach in comparison with existing sparse UWA channel estimation methods.

4.
IEEE Trans Image Process ; 32: 2160-2173, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37027289

RESUMO

RGB-D saliency detection aims to fuse multi-modal cues to accurately localize salient regions. Existing works often adopt attention modules for feature modeling, with few methods explicitly leveraging fine-grained details to merge with semantic cues. Thus, despite the auxiliary depth information, it is still challenging for existing models to distinguish objects with similar appearances but at distinct camera distances. In this paper, from a new perspective, we propose a novel Hierarchical Depth Awareness network (HiDAnet) for RGB-D saliency detection. Our motivation comes from the observation that the multi-granularity properties of geometric priors correlate well with the neural network hierarchies. To realize multi-modal and multi-level fusion, we first use a granularity-based attention scheme to strengthen the discriminatory power of RGB and depth features separately. Then we introduce a unified cross dual-attention module for multi-modal and multi-level fusion in a coarse-to-fine manner. The encoded multi-modal features are gradually aggregated into a shared decoder. Further, we exploit a multi-scale loss to take full advantage of the hierarchical information. Extensive experiments on challenging benchmark datasets demonstrate that our HiDAnet performs favorably over the state-of-the-art methods by large margins. The source code can be found in https://github.com/Zongwei97/HIDANet/.

5.
Med Image Anal ; 86: 102773, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36827870

RESUMO

Deep learning-based methods for cardiac MR segmentation have achieved state-of-the-art results. However, these methods can generate incorrect segmentation results which can lead to wrong clinical decisions in the downstream tasks. Automatic and accurate analysis of downstream tasks, such as myocardial tissue characterization, is highly dependent on the quality of the segmentation results. Therefore, it is of paramount importance to use quality control methods to detect the failed segmentations before further analysis. In this work, we propose a fully automatic uncertainty-based quality control framework for T1 mapping and extracellular volume (ECV) analysis. The framework consists of three parts. The first one focuses on segmentation of cardiac structures from a native and post-contrast T1 mapping dataset (n=295) using a Bayesian Swin transformer-based U-Net. In the second part, we propose a novel uncertainty-based quality control (QC) to detect inaccurate segmentation results. The QC method utilizes image-level uncertainty features as input to a random forest-based classifier/regressor to determine the quality of the segmentation outputs. The experimental results from four different types of segmentation results show that the proposed QC method achieves a mean area under the ROC curve (AUC) of 0.927 on binary classification and a mean absolute error (MAE) of 0.021 on Dice score regression, significantly outperforming other state-of-the-art uncertainty based QC methods. The performance gap is notably higher in predicting the segmentation quality from poor-performing models which shows the robustness of our method in detecting failed segmentations. After the inaccurate segmentation results are detected and rejected by the QC method, in the third part, T1 mapping and ECV values are computed automatically to characterize the myocardial tissues of healthy and cardiac pathological cases. The native myocardial T1 and ECV values computed from automatic and manual segmentations show an excellent agreement yielding Pearson coefficients of 0.990 and 0.975 (on the combined validation and test sets), respectively. From the results, we observe that the automatically computed myocardial T1 and ECV values have the ability to characterize myocardial tissues of healthy and cardiac diseases like myocardial infarction, amyloidosis, Tako-Tsubo syndrome, dilated cardiomyopathy, and hypertrophic cardiomyopathy.


Assuntos
Cardiomiopatia Hipertrófica , Miocárdio , Humanos , Incerteza , Teorema de Bayes , Miocárdio/patologia , Coração/diagnóstico por imagem , Cardiomiopatia Hipertrófica/patologia , Imageamento por Ressonância Magnética/métodos , Valor Preditivo dos Testes , Meios de Contraste
6.
Ophthalmol Ther ; 12(2): 657-674, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36562928

RESUMO

The healthcare burden of cardiovascular diseases remains a major issue worldwide. Understanding the underlying mechanisms and improving identification of people with a higher risk profile of systemic vascular disease through noninvasive examinations is crucial. In ophthalmology, retinal vascular network imaging is simple and noninvasive and can provide in vivo information of the microstructure and vascular health. For more than 10 years, different research teams have been working on developing software to enable automatic analysis of the retinal vascular network from different imaging techniques (retinal fundus photographs, OCT angiography, adaptive optics, etc.) and to provide a description of the geometric characteristics of its arterial and venous components. Thus, the structure of retinal vessels could be considered a witness of the systemic vascular status. A new approach called "oculomics" using retinal image datasets and artificial intelligence algorithms recently increased the interest in retinal microvascular biomarkers. Despite the large volume of associated research, the role of retinal biomarkers in the screening, monitoring, or prediction of systemic vascular disease remains uncertain. A PubMed search was conducted until August 2022 and yielded relevant peer-reviewed articles based on a set of inclusion criteria. This literature review is intended to summarize the state of the art in oculomics and cardiovascular disease research.

7.
Sensors (Basel) ; 22(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36081012

RESUMO

Specular highlights detection and removal in images is a fundamental yet non-trivial problem of interest. Most modern techniques proposed are inadequate at dealing with real-world images taken under uncontrolled conditions with the presence of complex textures, multiple objects, and bright colours, resulting in reduced accuracy and false positives. To detect specular pixels in a wide variety of real-world images independent of the number, colour, or type of illuminating source, we propose an efficient Specular Segmentation (SpecSeg) network based on the U-net architecture that is expeditious to train on nominal-sized datasets. The proposed network can detect pixels strongly affected by specular highlights with a high degree of precision, as shown by comparison with the state-of-the-art methods. The technique proposed is trained on publicly available datasets and tested using a large selection of real-world images with highly encouraging results.

8.
J Acoust Soc Am ; 151(6): 4150, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35778218

RESUMO

In this paper, a data augmentation aided complex-valued network is proposed for underwater acoustic (UWA) orthogonal frequency division multiplexing (OFDM) channel estimations, wherein empirical mode decomposition based data augmentation is proposed to solve the current dilemma in the deep learning embedded UWA-OFDM communications: data scarcity and data-sampling difficulties in real-world applications. In addition, the significance of high-frequency component augmentation for the UWA channel and how it positively influences the following model training are discussed in detail and demonstrated experimentally in this paper. In addition, the complex-valued network is specially designed for the complex-formatted UWA-OFDM signal, which can fully utilize the relationship between its real and imaginary parts with half of the spatial resources of its real-valued counterparts. The experiments with the at-sea-measured WATERMARK dataset indicate that the proposed method can perform a near-optimal channel estimation, and its low resource requirements (on dataset and model) make it more adaptable to real-world UWA applications.

9.
IEEE Trans Biomed Circuits Syst ; 16(3): 467-478, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35700260

RESUMO

Present architecture of convolution neural network for diabetic retinopathy (DR-Net) is based on normal convolution (NC). It incurs high computational cost as NC uses a multiplicative weight that measures a combined correlation in both cross-channel and spatial dimension of layer's inputs. This might cause the overall DR-Net architecture to be over-parameterised and computationally inefficient. This paper proposes EDR-Net - a new end-to-end, DR-Net architecture with depth-wise separable convolution module. The EDR-Net architecture was trained with DRKaggle-train dataset (35,126 images), and tested on two datasets, i.e. DRKaggle-test (53,576 images) and Messidor-2 (1,748 images). Results showed that the proposed EDR-Net achieved predictive performance comparable with current state-of-the-arts in detecting referable diabetic retinopathy (rDR) from fundus images and outperformed other light weight architectures, with at least two times less computation cost. This makes it more amenable for mobile device based computer-assisted rDR screening applications.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Algoritmos , Retinopatia Diabética/diagnóstico por imagem , Humanos , Redes Neurais de Computação , Curva ROC
10.
Med Image Anal ; 79: 102428, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35500498

RESUMO

A key factor for assessing the state of the heart after myocardial infarction (MI) is to measure whether the myocardium segment is viable after reperfusion or revascularization therapy. Delayed enhancement-MRI or DE-MRI, which is performed 10 min after injection of the contrast agent, provides high contrast between viable and nonviable myocardium and is therefore a method of choice to evaluate the extent of MI. To automatically assess myocardial status, the results of the EMIDEC challenge that focused on this task are presented in this paper. The challenge's main objectives were twofold. First, to evaluate if deep learning methods can distinguish between non-infarct and pathological exams, i.e. exams with or without hyperenhanced area. Second, to automatically calculate the extent of myocardial infarction. The publicly available database consists of 150 exams divided into 50 cases without any hyperenhanced area after injection of a contrast agent and 100 cases with myocardial infarction (and then with a hyperenhanced area on DE-MRI), whatever their inclusion in the cardiac emergency department. Along with MRI, clinical characteristics are also provided. The obtained results issued from several works show that the automatic classification of an exam is a reachable task (the best method providing an accuracy of 0.92), and the automatic segmentation of the myocardium is possible. However, the segmentation of the diseased area needs to be improved, mainly due to the small size of these areas and the lack of contrast with the surrounding structures.


Assuntos
Aprendizado Profundo , Infarto do Miocárdio , Meios de Contraste , Humanos , Imageamento por Ressonância Magnética/métodos , Infarto do Miocárdio/diagnóstico por imagem , Miocárdio/patologia
11.
Neurocomputing (Amst) ; 499: 63-80, 2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-35578654

RESUMO

Infection by the SARS-CoV-2 leading to COVID-19 disease is still rising and techniques to either diagnose or evaluate the disease are still thoroughly investigated. The use of CT as a complementary tool to other biological tests is still under scrutiny as the CT scans are prone to many false positives as other lung diseases display similar characteristics on CT scans. However, fully investigating CT images is of tremendous interest to better understand the disease progression and therefore thousands of scans need to be segmented by radiologists to study infected areas. Over the last year, many deep learning models for segmenting CT-lungs were developed. Unfortunately, the lack of large and shared annotated multicentric datasets led to models that were either under-tested (small dataset) or not properly compared (own metrics, none shared dataset), often leading to poor generalization performance. To address, these issues, we developed a model that uses a multiscale and multilevel feature extraction strategy for COVID19 segmentation and extensively validated it on several datasets to assess its generalization capability for other segmentation tasks on similar organs. The proposed model uses a novel encoder and decoder with a proposed kernel-based atrous spatial pyramid pooling module that is used at the bottom of the model to extract small features with a multistage skip connection concatenation approach. The results proved that our proposed model could be applied on a small-scale dataset and still produce generalizable performances on other segmentation tasks. The proposed model produced an efficient Dice score of 90% on a 100 cases dataset, 95% on the NSCLC dataset, 88.49% on the COVID19 dataset, and 97.33 on the StructSeg 2019 dataset as compared to existing state-of-the-art models. The proposed solution could be used for COVID19 segmentation in clinic applications. The source code is publicly available at https://github.com/RespectKnowledge/Mutiscale-based-Covid-_segmentation-usingDeep-Learning-models.

12.
Sensors (Basel) ; 22(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35336258

RESUMO

Accurate segmentation of the myocardial scar may supply relevant advancements in predicting and controlling deadly ventricular arrhythmias in subjects with cardiovascular disease. In this paper, we propose the architecture of inclusion and classification of prior information U-Net (ICPIU-Net) to efficiently segment the left ventricle (LV) myocardium, myocardial infarction (MI), and microvascular-obstructed (MVO) tissues from late gadolinium enhancement magnetic resonance (LGE-MR) images. Our approach was developed using two subnets cascaded to first segment the LV cavity and myocardium. Then, we used inclusion and classification constraint networks to improve the resulting segmentation of the diseased regions within the pre-segmented LV myocardium. This network incorporates the inclusion and classification information of the LGE-MRI to maintain topological constraints of pathological areas. In the testing stage, the outputs of each segmentation network obtained with specific estimated parameters from training were fused using the majority voting technique for the final label prediction of each voxel in the LGE-MR image. The proposed method was validated by comparing its results to manual drawings by experts from 50 LGE-MR images. Importantly, compared to various deep learning-based methods participating in the EMIDEC challenge, the results of our approach have a more significant agreement with manual contouring in segmenting myocardial diseases.


Assuntos
Cardiomiopatias , Aprendizado Profundo , Cardiomiopatias/patologia , Meios de Contraste , Gadolínio , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Miocárdio
13.
Med Image Anal ; 74: 102253, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34614474

RESUMO

Glaucoma is an ocular disease threatening irreversible vision loss. Primary screening of Glaucoma involves computation of optic cup (OC) to optic disc (OD) ratio that is widely accepted metric. Recent deep learning frameworks for OD and OC segmentation have shown promising results and ways to attain remarkable performance. In this paper, we present a novel segmentation network, Nested EfficientNet (NENet) that consists of EfficientNetB4 as an encoder along with a nested network of pre-activated residual blocks, atrous spatial pyramid pooling (ASPP) block and attention gates (AGs). The combination of cross-entropy and dice coefficient (DC) loss is utilized to guide the network for accurate segmentation. Further, a modified patch-based discriminator is designed for use with the NENet to improve the local segmentation details. Three publicly available datasets, REFUGE, Drishti-GS, and RIM-ONE-r3 were utilized to evaluate the performances of the proposed network. In our experiments, NENet outperformed state-of-the-art methods for segmentation of OD and OC. Additionally, we show that NENet has excellent generalizability across camera types and image resolution. The obtained results suggest that the proposed technique has potential to be an important component for an automated Glaucoma screening system.


Assuntos
Glaucoma , Disco Óptico , Técnicas de Diagnóstico Oftalmológico , Fundo de Olho , Glaucoma/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Programas de Rastreamento , Disco Óptico/diagnóstico por imagem
14.
J Acoust Soc Am ; 149(6): 4596, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34241419

RESUMO

In this paper, a meta-learning-based underwater acoustic (UWA) orthogonal frequency division multiplexing (OFDM) system is proposed to deal with the environment mismatch in real-world UWA applications, which can effectively drive the model from the given UWA environment to the new UWA environment with a relatively small amount of data. With meta-learning, we consider multiple UWA environments as multi-UWA-tasks, wherein the meta-training strategy is utilized to learn a robust model from previously observed multi-UWA-tasks, and it can be quickly adapted to the unknown UWA environment with only a small number of updates. The experiments with the at-sea-measured WATERMARK dataset and the lake trial indicate that, compared with the traditional UWA-OFDM system and the conventional machine learning-based framework, the proposed method shows better bit error rate performance and stronger learning ability under various UWA scenarios.

15.
Polymers (Basel) ; 12(11)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158093

RESUMO

To non-invasively monitor and screen for diabetes in patients, there is need to detect low concentration of acetone vapor in the range from 1.8 ppm to 5 ppm, which is the concentration range of acetone vapor in diabetic patients. This work presents an investigation for the utilization of chitosan-polyethylene glycol (PEG)-based surface plasmon resonance (SPR) sensor in the detection of trace concentration acetone vapor in the range of breath acetone in diabetic subjects. The structure, morphology, and elemental composition of the chitosan-PEG sensing layer were characterized using FTIR, UV-VIS, FESEM, EDX, AFM, and XPS methods. Response testing was conducted using low concentration of acetone vapor in the range of 0.5 ppm to 5 ppm using SPR technique. All the measurements were conducted at room temperature and 50 mL/min gas flow rate. The sensor showed good sensitivity, linearity, repeatability, reversibility, stability, and high affinity toward acetone vapor. The sensor also showed better selectivity to acetone compared to methanol, ethanol, and propanol vapors. More importantly, the lowest detection limit (LOD) of about 0.96 ppb confirmed the applicability of the sensor for the non-invasive monitoring and screening of diabetes.

16.
Polymers (Basel) ; 12(11)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233844

RESUMO

This work reports the use of a ternary composite that integrates p-Toluene sulfonic acid doped polyaniline (PANI), chitosan, and reduced graphene oxide (RGO) as the active sensing layer of a surface plasmon resonance (SPR) sensor. The SPR sensor is intended for application in the non-invasive monitoring and screening of diabetes through the detection of low concentrations of acetone vapour of less than or equal to 5 ppm, which falls within the range of breath acetone concentration in diabetic patients. The ternary composite film was spin-coated on a 50-nm-thick gold layer at 6000 rpm for 30 s. The structure, morphology and chemical composition of the ternary composite samples were characterized by FTIR, UV-VIS, FESEM, EDX, AFM, XPS, and TGA and the response to acetone vapour at different concentrations in the range of 0.5 ppm to 5 ppm was measured at room temperature using SPR technique. The ternary composite-based SPR sensor showed good sensitivity and linearity towards acetone vapour in the range considered. It was determined that the sensor could detect acetone vapour down to 0.88 ppb with a sensitivity of 0.69 degree/ppm with a linearity correlation coefficient of 0.997 in the average SPR angular shift as a function of the acetone vapour concentration in air. The selectivity, repeatability, reversibility, and stability of the sensor were also studied. The acetone response was 87%, 94%, and 99% higher compared to common interfering volatile organic compounds such as propanol, methanol, and ethanol, respectively. The attained lowest detection limit (LOD) of 0.88 ppb confirms the potential for the utilisation of the sensor in the non-invasive monitoring and screening of diabetes.

17.
Comput Biol Med ; 127: 104097, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33142142

RESUMO

Automatic segmentation on computed tomography images of kidney and liver tumors remains a challenging task due to heterogeneity and variation in shapes. Recently, two-dimensional (2D) and three-dimensional (3D) deep convolutional neural networks have become popular in medical image segmentation tasks because they can leverage large labeled datasets, thus enabling them to learn hierarchical features. However, 3D networks have some drawbacks due to their high cost of computational resources. In this paper, we propose a hybrid 3D residual network (RN) with a squeeze-and-excitation (SE) block for volumetric segmentation of kidney, liver, and their associated tumors. The proposed network uses SE blocks to capture spatial information based on the reweighting function in a 3D RN. This study is the first to use an SE residual mechanism to process medical volumetric images using the proposed 3D residual network composed of various combinations of residual blocks. Our framework was evaluated both on the Kidney Tumor Segmentation 2019 dataset and the public MICCAI 2017 Liver Tumor Segmentation dataset. The results show that our architecture outperforms other state-of-the-art methods. Moreover, the SE-RN achieves good performance in volumetric biomedical segmentation.


Assuntos
Processamento de Imagem Assistida por Computador , Neoplasias Hepáticas , Abdome , Humanos , Imageamento Tridimensional , Neoplasias Hepáticas/diagnóstico por imagem , Redes Neurais de Computação , Tomografia Computadorizada por Raios X
18.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 1863-1866, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018363

RESUMO

The deterioration of the retina center could be the main reason for vision loss. Older people usually ranging from 50 years and above are exposed to age-related macular degeneration (AMD) disease that strikes the retina. The lack of human expertise to interpret the complexity in diagnosing diseases leads to the importance of developing an accurate method to detect and localize the targeted infection. Approaching the performance of ophthalmologists is the consistent main challenge in retinal disease segmentation. Artificial intelligence techniques have shown enormous achievement in various tasks in computer vision. This paper depicts an automated end-to-end deep neural network for retinal disease segmentation on optical coherence tomography (OCT) scans. The work proposed in this study shows the performance difference between convolution operations and atrous convolution operations. Three deep semantic segmentation architectures, namely U-net, Segnet, and Deeplabv3+, have been considered to evaluate the performance of varying convolution operations. Empirical outcomes show a competitive performance to the human level, with an average dice score of 0.73 for retinal diseases.


Assuntos
Doenças Retinianas , Tomografia de Coerência Óptica , Idoso , Idoso de 80 Anos ou mais , Inteligência Artificial , Humanos , Redes Neurais de Computação , Retina/diagnóstico por imagem , Doenças Retinianas/diagnóstico por imagem
19.
Molecules ; 25(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992942

RESUMO

The optical constants of Para-Toluene sulfonic acid-doped polyaniline (PANI), PANIchitosan composites, PANI-reduced graphene-oxide composites and a ternary composite comprising of PANI, chitosan and reduced graphene-oxide dispersed in diluted p-toluene sulfonic acid (PTSA) solution and N-Methyl-2-Pyrrolidone (NMP) solvent have been evaluated and compared. The optical constant values were extracted from the absorbance spectra of thin layers of the respective samples. The potential utilization of the materials as the active sensing materials of surface plasmon resonance biosensors has also been assessed in terms of the estimated value of the penetration depth through a dielectric medium. The results show a reasonable dependence of the optical constant parameters on the solvent type. Higher real part refractive index (n) and real part complex dielectric permittivity (ε') values were observed for the samples prepared using PTSA solution, while higher optical conductivity values were observed for the NMP-based samples due to their relatively higher imaginary part refractive index (k) and imaginary part complex dielectric permittivity (ε″) values. In addition, NMP-based samples show improvement in terms of the penetration depth through a dielectric medium by around 9.5, 1.6, 4.4 and 2.9 times compared to PTSA-based samples for the PANI, PANI-chitosan, PANI-RGO and the ternary composites, respectively. Based on these, it is concluded that preparation of these materials using different dispersion solvents could produce materials of different optical properties. Thus, the variation of the dispersion solvent will allow the flexible utilization of the PANI and the composites for diverse applications.


Assuntos
Compostos de Anilina/química , Benzenossulfonatos/química , Pirrolidinonas/química
20.
Sensors (Basel) ; 20(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32630115

RESUMO

Neurological disorders such as cerebral paralysis, spinal cord injuries, and strokes, result in the impairment of motor control and induce functional difficulties to human beings like walking, standing, etc. Physical injuries due to accidents and muscular weaknesses caused by aging affect people and can cause them to lose their ability to perform daily routine functions. In order to help people recover or improve their dysfunctional activities and quality of life after accidents or strokes, assistive devices like exoskeletons and orthoses are developed. Control strategies for control of exoskeletons are developed with the desired intention of improving the quality of treatment. Amongst recent control strategies used for rehabilitation robots, active disturbance rejection control (ADRC) strategy is a systematic way out from a robust control paradox with possibilities and promises. In this modern era, we always try to find the solution in order to have minimum resources and maximum output, and in robotics-control, to approach the same condition observer-based control strategies is an added advantage where it uses a state estimation method which reduces the requirement of sensors that is used for measuring every state. This paper introduces improved active disturbance rejection control (I-ADRC) controllers as a combination of linear extended state observer (LESO), tracking differentiator (TD), and nonlinear state error feedback (NLSEF). The proposed controllers were evaluated through simulation by investigating the sagittal plane gait trajectory tracking performance of two degrees of freedom, Lower Limb Robotic Rehabilitation Exoskeleton (LLRRE). This multiple input multiple output (MIMO) LLRRE has two joints, one at the hip and other at the knee. In the simulation study, the proposed controllers show reduced trajectory tracking error, elimination of random, constant, and harmonic disturbances, robustness against parameter variations, and under the influence of noise, with improvement in performance indices, indicates its enhanced tracking performance. These promising simulation results would be validated experimentally in the next phase of research.


Assuntos
Exoesqueleto Energizado , Extremidade Inferior , Reabilitação/instrumentação , Robótica , Humanos , Qualidade de Vida , Caminhada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA