Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Mol Biol Evol ; 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39447047

RESUMO

Many highly recognisable species lack genetic data important for conservation due to neglect over their hyperabundance. This likely applies to the Sulphur-crested Cockatoo (Cacatua galerita), one of the world's most iconic parrots. The species is native to Australia, New Guinea and some surrounding Melanesian islands. Four subspecies are currently recognised based on morphology. Australian subspecies and populations are abundant, but several factors threaten those in New Guinea and Melanesia. Genetic data from natural populations are scarce - information that is vital to identifying evolutionarily significant units (ESUs) important for modern conservation planning. We used whole-genome resequencing to investigate patterns of differentiation, evolutionary affinities and demographic history across C. galerita's range to assess whether currently recognised subspecies represent ESUs. We complement this with an assessment of bioacoustic variation across the species' distribution range. Our results point to C. galerita sensu lato (s.l.) comprising two species. We restrict C. galerita sensu stricto (s.s.) to populations in Australia and the Trans-Fly ecodomain of southern New Guinea. The second species, recognised here as Cacatua triton, likely occurs over much of the rest of New Guinea. Restricting further discussion of intraspecific diversity in C. triton, we show that within C. galerita s.s. two ESUs exist, which align to Cacatua galerita galerita in eastern Australia and southern New Guinea and Cacatua galerita fitzroyi in northern and north-western Australia. We suggest that the evolution of these species and ESUs are linked to Middle and Late Pleistocene glacial cycles and their effects on sea level and preferential habitats. We argue that conservation assessments need updating, protection of preferential forest and woodland habitats are important and reintroductions require careful management to avoid possible negative hybridization effects of non-complementary lineages.

2.
Evol Lett ; 8(5): 658-668, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39328282

RESUMO

Recent discoveries of sex chromosome diversity across the tree of life have challenged the canonical model of conserved sex chromosome evolution and evoked new theories on labile sex chromosomes that maintain less differentiation and undergo frequent turnover. However, theories of labile sex chromosome evolution lack direct empirical support due to the paucity of case studies demonstrating ongoing sex chromosome turnover in nature. Two divergent lineages (viz. WL & EL) of nine-spined sticklebacks (Pungitius pungitius) with different sex chromosomes (linkage group [LG] 12 in the EL, unknown in the WL) hybridize in a natural secondary contact zone in the Baltic Sea, providing an opportunity to study ongoing turnover between coexisting sex chromosomes. In this study, we first identify an 80 kbp genomic region on LG3 as the sex-determining region (SDR) using whole-genome resequencing data of family crosses of a WL population. We then verify this region as the SDR in most other WL populations and demonstrate a potentially ongoing sex chromosome turnover in admixed marine populations where the evolutionarily younger and homomorphic LG3 sex chromosome replaces the older and heteromorphic LG12 sex chromosome. The results provide a rare glimpse of sex chromosome turnover in the wild and indicate the possible existence of additional yet undiscovered sex chromosome diversity in Pungitius sticklebacks.

3.
Heredity (Edinb) ; 133(2): 88-98, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38961235

RESUMO

Many endangered species live in fragmented and isolated populations with low genetic variability, signs of inbreeding, and small effective population sizes - all features elevating their extinction risk. The flat-headed loach (Oreonectes platycephalus), a small noemacheilid fish, is widely across southern China, but only in the headwaters of hillstreams; as a result, they are spatially isolated from conspecific populations. We surveyed single nucleotide polymorphisms in 16 Hong Kong populations of O. platycephalus to determine whether loach populations from different streams were genetically isolated from each other, showed low levels of genetic diversity, signs of inbreeding, and had small contemporary effective population sizes. Estimates of average observed heterozygosity (HO = 0.0473), average weighted nucleotide diversity (πw = 0.0546) and contemporary effective population sizes (Ne = 10.2 ~ 129.8) were very low, and several populations showed clear signs of inbreeding as judged from relatedness estimates. The degree of genetic differentiation among populations was very high (average FST = 0.668), even over short geographic distances (<1.5 km), with clear patterns of isolation by distance. These results suggest that Hong Kong populations of O. platycephalus have experienced strong genetic drift and loss of genetic variability because sea-level rise after the last glaciation reduced connectedness among paleodrainages, isolating populations in headwaters. All this, together with the fact that the levels of genetic diversity and contemporary effective population sizes within O. platycephalus populations are lower than most other freshwater fishes, suggests that they face high local extinction risk and have limited capacity for future adaptation.


Assuntos
Cipriniformes , Espécies em Perigo de Extinção , Variação Genética , Genética Populacional , Polimorfismo de Nucleotídeo Único , Densidade Demográfica , Animais , Cipriniformes/genética , Hong Kong , Endogamia , Deriva Genética , Adaptação Fisiológica/genética
4.
J Evol Biol ; 37(9): 995-1008, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39073424

RESUMO

Whether populations adapt to similar selection pressures using the same underlying genetic variants depends on population history and the distribution of standing genetic variation at the metapopulation level. Studies of sticklebacks provide a case in point: when colonizing and adapting to freshwater habitats, three-spined sticklebacks (Gasterosteus aculeatus) with high gene flow tend to fix the same adaptive alleles in the same major loci, whereas nine-spined sticklebacks (Pungitius pungitius) with limited gene flow tend to utilize a more heterogeneous set of loci. In accordance with this, we report results of quantitative trait locus (QTL) analyses using a backcross design showing that lateral plate number variation in the western European nine-spined sticklebacks mapped to 3 moderate-effect QTL, contrary to the major-effect QTL in three-spined sticklebacks and different from the 4 QTL previously identified in the eastern European nine-spined sticklebacks. Furthermore, several QTL were identified associated with variation in lateral plate size, and 3 moderate-effect QTL with body size. Together, these findings indicate more heterogenous and polygenic genetic underpinnings of skeletal armour variation in nine-spined than three-spined sticklebacks, indicating limited genetic parallelism underlying armour trait evolution in the family Gasterostidae.


Assuntos
Locos de Características Quantitativas , Smegmamorpha , Animais , Smegmamorpha/genética , Variação Genética , Masculino , Tamanho Corporal/genética , Feminino , Fenótipo
5.
Mol Ecol Resour ; 24(6): e13985, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38850116

RESUMO

Despite their critical roles in genetic sex determination, sex chromosomes remain unknown in many non-model organisms, especially those having recently evolved sex-linked regions (SLRs). These evolutionarily young and labile sex chromosomes are important for understanding early sex chromosome evolution but are difficult to identify due to the lack of Y/W degeneration and SLRs limited to small genomic regions. Here, we present SLRfinder, a method to identify candidate SLRs using linkage disequilibrium (LD) clustering, heterozygosity and genetic divergence. SLRfinder does not rely on specific sequencing methods or a specific type of reference genome (e.g., from the homomorphic sex). In addition, the input of SLRfinder does not require phenotypic sexes, which may be unknown from population sampling, but sex information can be incorporated and is necessary to validate candidate SLRs. We tested SLRfinder using various published datasets and compared it to the local principal component analysis (PCA) method and the depth-based method Sex Assignment Through Coverage (SATC). As expected, the local PCA method could not be used to identify unknown SLRs. SATC works better on conserved sex chromosomes, whereas SLRfinder outperforms SATC in analysing labile sex chromosomes, especially when SLRs harbour inversions. Power analyses showed that SLRfinder worked better when sampling more populations that share the same SLR. If analysing one population, a relatively larger sample size (around 50) is needed for sufficient statistical power to detect significant SLR candidates, although true SLRs are likely always top-ranked. SLRfinder provides a novel and complementary approach for identifying SLRs and uncovering additional sex chromosome diversity in nature.


Assuntos
Desequilíbrio de Ligação , Cromossomos Sexuais , Cromossomos Sexuais/genética , Biologia Computacional/métodos , Animais , Masculino , Feminino , Análise por Conglomerados
6.
G3 (Bethesda) ; 14(8)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38861393

RESUMO

The nine-spined stickleback (Pungitius pungitius) has been increasingly used as a model system in studies of local adaptation and sex chromosome evolution but its current reference genome assembly is far from perfect, lacking distinct sex chromosomes. We generated an improved assembly of the nine-spined stickleback reference genome (98.3% BUSCO completeness) with the aid of linked-read mapping. While the new assembly (v8) was of similar size as the earlier version (v7), we were able to assign 4.4 times more contigs to the linkage groups and improve the contiguity of the genome. Moreover, the new assembly contains a ∼22.8 Mb Y-linked scaffold (LG22) consisting mainly of previously assigned X-contigs, putative Y-contigs, putative centromere contigs, and highly repetitive elements. The male individual showed an even mapping depth on LG12 (pseudo X chromosome) and LG22 (Y-linked scaffold) in the segregating sites, suggesting near-pure X and Y representation in the v8 assembly. A total of 26,803 genes were annotated, and about 33% of the assembly was found to consist of repetitive elements. The high proportion of repetitive elements in LG22 (53.10%) suggests it can be difficult to assemble the complete sequence of the species' Y chromosome. Nevertheless, the new assembly is a significant improvement over the previous version and should provide a valuable resource for genomic studies of stickleback fishes.


Assuntos
Genoma , Smegmamorpha , Animais , Smegmamorpha/genética , Masculino , Feminino , Genômica/métodos , Mapeamento de Sequências Contíguas/métodos , Cromossomos Sexuais/genética , Mapeamento Cromossômico , Anotação de Sequência Molecular , Ligação Genética , Sequências Repetitivas de Ácido Nucleico
7.
Sci Rep ; 14(1): 9489, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664489

RESUMO

Asian mock vipers of the genus Psammodynastes and African forest snakes of the genus Buhoma are two genera belonging to the snake superfamily Elapoidea. The phylogenetic placements of Psammodynastes and Buhoma within Elapoidea has been extremely unstable which has resulted in their uncertain and debated taxonomy. We used ultraconserved elements and traditional nuclear and mitochondrial markers to infer the phylogenetic relationships of these two genera with other elapoids. Psammodynastes, for which a reference genome has been sequenced, were found, with strong branch support, to be a relatively early diverging split within Elapoidea that is sister to a clade consisting of Elapidae, Micrelapidae and Lamprophiidae. Hence, we allocate Psammodynastes to its own family, Psammodynastidae new family. However, the phylogenetic position of Buhoma could not be resolved with a high degree of confidence. Attempts to identify the possible sources of conflict in the rapid radiation of elapoid snakes suggest that both hybridisation/introgression during the rapid diversification, including possible ghost introgression, as well as incomplete lineage sorting likely have had a confounding role. The usual practice of combining mitochondrial loci with nuclear genomic data appears to mislead phylogeny reconstructions in rapid radiation scenarios, especially in the absence of genome scale data.


Assuntos
Filogenia , Serpentes , Animais , Serpentes/genética , Serpentes/classificação , Viperidae/genética , Viperidae/classificação , Genômica/métodos
8.
Proc Biol Sci ; 291(2020): 20232617, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38593844

RESUMO

When populations repeatedly adapt to similar environments they can evolve similar phenotypes based on shared genetic mechanisms (parallel evolution). The likelihood of parallel evolution is affected by demographic history, as it depends on the standing genetic variation of the source population. The three-spined stickleback (Gasterosteus aculeatus) repeatedly colonized and adapted to brackish and freshwater. Most parallel evolution studies in G. aculeatus were conducted at high latitudes, where freshwater populations maintain connectivity to the source marine populations. Here, we analysed southern and northern European marine and freshwater populations to test two hypotheses. First, that southern European freshwater populations (which currently lack connection to marine populations) lost genetic diversity due to bottlenecks and inbreeding compared to their northern counterparts. Second, that the degree of genetic parallelism is higher among northern than southern European freshwater populations, as the latter have been subjected to strong drift due to isolation. The results show that southern populations exhibit lower genetic diversity but a higher degree of genetic parallelism than northern populations. Hence, they confirm the hypothesis that southern populations have lost genetic diversity, but this loss probably happened after they had already adapted to freshwater conditions, explaining the high degree of genetic parallelism in the south.


Assuntos
Água Doce , Smegmamorpha , Animais , Smegmamorpha/genética , Endogamia , Variação Genética
9.
Mol Ecol ; 33(6): e17299, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38380534

RESUMO

Additive and dominance genetic variances underlying the expression of quantitative traits are important quantities for predicting short-term responses to selection, but they are notoriously challenging to estimate in most non-model wild populations. Specifically, large-sized or panmictic populations may be characterized by low variance in genetic relatedness among individuals which, in turn, can prevent accurate estimation of quantitative genetic parameters. We used estimates of genome-wide identity-by-descent (IBD) sharing from autosomal SNP loci to estimate quantitative genetic parameters for ecologically important traits in nine-spined sticklebacks (Pungitius pungitius) from a large, outbred population. Using empirical and simulated datasets, with varying sample sizes and pedigree complexity, we assessed the performance of different crossing schemes in estimating additive genetic variance and heritability for all traits. We found that low variance in relatedness characteristic of wild outbred populations with high migration rate can impair the estimation of quantitative genetic parameters and bias heritability estimates downwards. On the other hand, the use of a half-sib/full-sib design allowed precise estimation of genetic variance components and revealed significant additive variance and heritability for all measured traits, with negligible dominance contributions. Genome-partitioning and QTL mapping analyses revealed that most traits had a polygenic basis and were controlled by genes at multiple chromosomes. Furthermore, different QTL contributed to variation in the same traits in different populations suggesting heterogeneous underpinnings of parallel evolution at the phenotypic level. Our results provide important guidelines for future studies aimed at estimating adaptive potential in the wild, particularly for those conducted in outbred large-sized populations.


Assuntos
Genoma , Herança Multifatorial , Humanos , Genoma/genética , Mapeamento Cromossômico , Fenótipo , Modelos Genéticos , Polimorfismo de Nucleotídeo Único/genética
10.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38366566

RESUMO

Advances in genomic studies have revealed that hybridization in nature is pervasive and raised questions about the dynamics of different genetic and evolutionary factors following the initial hybridization event. While recent research has proposed that the genomic outcomes of hybridization might be predictable to some extent, many uncertainties remain. With comprehensive whole-genome sequence data, we investigated the genetic introgression between 2 divergent lineages of 9-spined sticklebacks (Pungitius pungitius) in the Baltic Sea. We found that the intensity and direction of selection on the introgressed variation has varied across different genomic elements: while functionally important regions displayed reduced rates of introgression, promoter regions showed enrichment. Despite the general trend of negative selection, we identified specific genomic regions that were enriched for introgressed variants, and within these regions, we detected footprints of selection, indicating adaptive introgression. Geographically, we found the selection against the functional changes to be strongest in the vicinity of the secondary contact zone and weaken as a function of distance from the initial contact. Altogether, the results suggest that the stabilization of introgressed variation in the genomes is a complex, multistage process involving both negative and positive selection. In spite of the predominance of negative selection against introgressed variants, we also found evidence for adaptive introgression variants likely associated with adaptation to Baltic Sea environmental conditions.


Assuntos
Introgressão Genética , Smegmamorpha , Animais , Smegmamorpha/genética , Genoma , Genômica , Hibridização Genética
11.
Mol Biol Evol ; 40(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37648662

RESUMO

Mutation rate is a fundamental parameter in population genetics. Apart from being an important scaling parameter for demographic and phylogenetic inference, it allows one to understand at what rate new genetic diversity is generated and what the expected level of genetic diversity is in a population at equilibrium. However, except for well-established model organisms, accurate estimates of de novo mutation rates are available for a very limited number of organisms from the wild. We estimated mutation rates (µ) in two marine populations of the nine-spined stickleback (Pungitius pungitius) with the aid of several 2- and 3-generational family pedigrees, deep (>50×) whole-genome resequences and a high-quality reference genome. After stringent filtering, we discovered 308 germline mutations in 106 offspring translating to µ = 4.83 × 10-9 and µ = 4.29 × 10-9 per base per generation in the two populations, respectively. Up to 20% of the mutations were shared by full-sibs showing that the level of parental mosaicism was relatively high. Since the estimated µ was 3.1 times smaller than the commonly used substitution rate, recalibration with µ led to substantial increase in estimated divergence times between different stickleback species. Our estimates of the de novo mutation rate should provide a useful resource for research focused on fish population genetics and that of sticklebacks in particular.


Assuntos
Smegmamorpha , Animais , Smegmamorpha/genética , Taxa de Mutação , Filogenia , Mutação , Mutação em Linhagem Germinativa
12.
Ecol Evol ; 13(3): e9926, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37006890

RESUMO

Increased access to genome-wide data provides new opportunities for plant conservation. However, information on neutral genetic diversity in a small number of marker loci can still be valuable because genomic data are not available to most rare plant species. In the hope of bridging the gap between conservation science and practice, we outline how conservation practitioners can more efficiently employ population genetic information in plant conservation. We first review the current knowledge about neutral genetic variation (NGV) and adaptive genetic variation (AGV) in seed plants, regarding both within-population and among-population components. We then introduce the estimates of among-population genetic differentiation in quantitative traits (Q ST) and neutral markers (F ST) to plant biology and summarize conservation applications derived from Q ST-F ST comparisons, particularly on how to capture most AGV and NGV on both in-situ and ex-situ programs. Based on a review of published studies, we found that, on average, two and four populations would be needed for woody perennials (n = 18) to capture 99% of NGV and AGV, respectively, whereas four populations would be needed in case of herbaceous perennials (n = 14). On average, Q ST is about 3.6, 1.5, and 1.1 times greater than F ST in woody plants, annuals, and herbaceous perennials, respectively. Hence, conservation and management policies or suggestions based solely on inference on F ST could be misleading, particularly in woody species. To maximize the preservation of the maximum levels of both AGV and NGV, we suggest using maximum Q ST rather than average Q ST. We recommend conservation managers and practitioners consider this when formulating further conservation and restoration plans for plant species, particularly woody species.

13.
Mol Ecol ; 32(13): 3440-3449, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37000426

RESUMO

Inbreeding depression refers to the reduced fitness of offspring produced by genetically-related individuals and is expected to be rare in large, outbred populations. When it occurs, marked fitness loss is possible as large populations can carry a substantial load of recessive harmful mutations which are normally sheltered at the heterozygous state. Using experimental cross data and genome-wide identity-by-descent (IBD) relationships from an outbred marine nine-spined stickleback (Pungitius pungitius) population, we documented a significant decrease in offspring survival probability with increasing parental IBD sharing associated with an average inbreeding load (B) of 10.5. Interestingly, we found that this relationship was also underlined by a positive effect of paternal inbreeding coefficient on offspring survival, suggesting that certain combinations of parental inbreeding and genetic relatedness among mates may promote offspring survival. Our results demonstrate the potential for substantial inbreeding load in an outbred population and emphasize the need to consider fine-scale genetic relatedness in future studies of inbreeding depression in the wild.


Assuntos
Depressão por Endogamia , Humanos , Depressão por Endogamia/genética , Endogamia , Mutação , Genoma , Heterozigoto
14.
Mol Biol Evol ; 40(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36738166

RESUMO

New mutations and standing genetic variations contribute significantly to repeated phenotypic evolution in sticklebacks. However, less is known about the role of introgression in this process. We analyzed taxonomically and geographically comprehensive genomic data from Pungitius sticklebacks to decipher the extent of introgression and its consequences for the diversification of this genus. Our results demonstrate that introgression is more prevalent than suggested by earlier studies. Although gene flow was generally bidirectional, it was often asymmetric and left unequal genomic signatures in hybridizing species, which might, at least partly, be due to biased hybridization and/or population size differences. In several cases, introgression of variants from one species to another was accompanied by transitions of pelvic and/or lateral plate structures-important diagnostic traits in Pungitius systematics-and frequently left signatures of adaptation in the core gene regulatory networks of armor trait development. This finding suggests that introgression has been an important source of genetic variation and enabled phenotypic convergence among Pungitius sticklebacks. The results highlight the importance of introgression of genetic variation as a source of adaptive variation underlying key ecological and taxonomic traits. Taken together, our study indicates that introgression-driven convergence likely explains the long-standing challenges in resolving the taxonomy and systematics of this small but phenotypically highly diverse group of fish.


Assuntos
Smegmamorpha , Animais , Smegmamorpha/genética , Peixes , Mutação , Fenótipo , Adaptação Fisiológica
15.
Mol Phylogenet Evol ; 180: 107700, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36603697

RESUMO

The highly diverse snake superfamily Elapoidea is considered to be a classic example of ancient, rapid radiation. Such radiations are challenging to fully resolve phylogenetically, with the highly diverse Elapoidea a case in point. Previous attempts at inferring a phylogeny of elapoids produced highly incongruent estimates of their evolutionary relationships, often with very low statistical support. We sought to resolve this situation by sequencing over 4,500 ultraconserved element loci from multiple representatives of every elapoid family/subfamily level taxon and inferring their phylogenetic relationships with multiple methods. Concatenation and multispecies coalescent based species trees yielded largely congruent and well-supported topologies. Hypotheses of a hard polytomy were not retained for any deep branches. Our phylogenies recovered Cyclocoridae and Elapidae as diverging early within Elapoidea. The Afro-Malagasy radiation of elapoid snakes, classified as multiple subfamilies of an inclusive Lamprophiidae by some earlier authors, was found to be monophyletic in all analyses. The genus Micrelaps was consistently recovered as sister to Lamprophiidae. We establish a new family, Micrelapidae fam. nov., for Micrelaps and assign Brachyophis to this family based on cranial osteological synapomorphy. We estimate that Elapoidea originated in the early Eocene and rapidly diversified into all the major lineages during this epoch. Ecological opportunities presented by the post-Cretaceous-Paleogene mass extinction event may have promoted the explosive radiation of elapoid snakes.


Assuntos
Evolução Biológica , Serpentes , Animais , Filogenia , Serpentes/genética
16.
Front Zool ; 20(1): 1, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36604706

RESUMO

BACKGROUND: The high-altitude-adapted frog Rana kukunoris, occurring on the Tibetan plateau, is an excellent model to study life history evolution and adaptation to harsh high-altitude environments. However, genomic resources for this species are still underdeveloped constraining attempts to investigate the underpinnings of adaptation. RESULTS: The R. kukunoris genome was assembled to a size of 4.83 Gb and the contig N50 was 1.80 Mb. The 6555 contigs were clustered and ordered into 12 pseudo-chromosomes covering ~ 93.07% of the assembled genome. In total, 32,304 genes were functionally annotated. Synteny analysis between the genomes of R. kukunoris and a low latitude species Rana temporaria showed a high degree of chromosome level synteny with one fusion event between chr11 and chr13 forming pseudo-chromosome 11 in R. kukunoris. Characterization of features of the R. kukunoris genome identified that 61.5% consisted of transposable elements and expansions of gene families related to cell nucleus structure and taste sense were identified. Ninety-five single-copy orthologous genes were identified as being under positive selection and had functions associated with the positive regulation of proteins in the catabolic process and negative regulation of developmental growth. These gene family expansions and positively selected genes indicate regions for further interrogation to understand adaptation to high altitude. CONCLUSIONS: Here, we reported a high-quality chromosome-level genome assembly of a high-altitude amphibian species using a combination of Illumina, PacBio and Hi-C sequencing technologies. This genome assembly provides a valuable resource for subsequent research on R. kukunoris genomics and amphibian genome evolution in general.

17.
Heredity (Edinb) ; 130(3): 114-121, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36566319

RESUMO

Map distance is one of the key measures in genetics and indicates the expected number of crossovers between two loci. Map distance is estimated from the observed recombination frequency using mapping functions, the most widely used of those, Haldane and Kosambi, being developed at the time when the number of markers was low and unobserved crossovers had a substantial effect on the recombination fractions. In contemporary high-density marker data, the probability of multiple crossovers between adjacent loci is negligible and different mapping functions yield the same result, that is, the recombination frequency between adjacent loci is equal to the map distance in Morgans. However, high-density linkage maps contain an interpretation problem: the map distance over a long interval is additive and its association with recombination frequency is not defined. Here, we demonstrate with high-density linkage maps from humans and stickleback fishes that the inverses of Haldane's and Kosambi's mapping functions systematically underpredict recombination frequencies from map distance. To remedy this, we formulate a piecewise function that yields more accurate predictions of recombination frequency from map distance. Our results demonstrate that the association between map distance and recombination frequency is context-dependent and without a universal solution.


Assuntos
Recombinação Genética , Humanos , Mapeamento Cromossômico/métodos , Probabilidade , Ligação Genética
19.
Evolution ; 76(11): 2712-2723, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36117280

RESUMO

The occurrence of similar phenotypes in multiple independent populations derived from common ancestral conditions (viz. parallel evolution) is a testimony of evolution by natural selection. Parallel evolution implies that populations share a common phenotypic response to a common selection pressure associated with habitat similarity. Examples of parallel evolution at genetic and phenotypic levels are fairly common, but the driving selective agents often remain elusive. Similarly, the role of phenotypic plasticity in facilitating early stages of parallel evolution is unclear. We investigated whether the relaxation of predation pressure associated with the colonization of freshwater ponds by nine-spined sticklebacks (Pungitius pungitius) likely explains the divergence in complex behaviors between marine and pond populations, and whether this divergence is parallel. Using laboratory-raised individuals exposed to different levels of perceived predation risk, we calculated vectors of phenotypic divergence for four behavioral traits between habitats and predation risk treatments. We found a significant correlation between the directions of evolutionary divergence and phenotypic plasticity, suggesting that divergence in behavior between habitats is aligned with the response to relaxation of predation pressure. Finally, we show alignment across multiple pairs of populations, and that relaxation of predation pressure has likely driven parallel evolution of behavior in this species.


Assuntos
Smegmamorpha , Animais , Smegmamorpha/genética , Comportamento Predatório , Ecossistema , Seleção Genética , Adaptação Fisiológica
20.
Mol Ecol ; 31(20): 5386-5401, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35962788

RESUMO

Introgressive hybridization is an important process in evolution but challenging to identify, undermining the efforts to understand its role and significance. On the contrary, many analytical methods assume direct descent from a single common ancestor, and admixture among populations can violate their assumptions and lead to seriously biased results. A detailed analysis of 888 whole-genome sequences of nine-spined sticklebacks (Pungitius pungitius) revealed a complex pattern of population ancestry involving multiple waves of gene flow and introgression across northern Europe. The two recognized lineages were found to have drastically different histories, and their secondary contact zone was wider than anticipated, displaying a smooth gradient of foreign ancestry with some curious deviations from the expected pattern. Interestingly, the freshwater isolates provided peeks into the past and helped to understand the intermediate states of evolutionary processes. Our analyses and findings paint a detailed picture of the complex colonization history of northern Europe and provide backdrop against which introgression and its role in evolution can be investigated. However, they also expose the challenges in analyses of admixed populations and demonstrate how hidden admixture and colonization history misleads the estimation of admixture proportions and population split times.


Assuntos
Smegmamorpha , Animais , Europa (Continente) , Água Doce , Fluxo Gênico/genética , Genética Populacional , Genoma , Smegmamorpha/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA