Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 123(6): 061301, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31491184

RESUMO

Gravitational potentials that change in time induce fluctuations in the observed cosmic microwave background (CMB) temperature. Cosmological structure moving transverse to our line of sight provides a specific example known as the moving lens effect. Here, we explore how the observed CMB temperature fluctuations, combined with the observed matter overdensity, can be used to infer the transverse velocity of cosmological structures on large scales. We show that near-future CMB surveys and galaxy surveys will have the statistical power to make a first detection of the moving lens effect, and we discuss applications for the reconstructed transverse velocity.

2.
Phys Rev Lett ; 116(25): 251301, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27391710

RESUMO

While the use of numerical general relativity for modeling astrophysical phenomena and compact objects is commonplace, the application to cosmological scenarios is only just beginning. Here, we examine the expansion of a spacetime using the Baumgarte-Shapiro-Shibata-Nakamura formalism of numerical relativity in synchronous gauge. This work represents the first numerical cosmological study that is fully relativistic, nonlinear, and without symmetry. The universe that emerges exhibits an average Friedmann-Lemaître-Robertson-Walker (FLRW) behavior; however, this universe also exhibits locally inhomogeneous expansion beyond that expected in linear perturbation theory around a FLRW background.

3.
J Microsc ; 264(3): 339-350, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27439786

RESUMO

An accurate knowledge of the complex microstructure of a heterogeneous material is crucial for its performance prediction, prognosis and optimization. X-ray tomography has provided a nondestructive means for microstructure characterization in 3D and 4D (i.e. structural evolution over time), in which a material is typically reconstructed from a large number of tomographic projections using filtered-back-projection (FBP) method or algebraic reconstruction techniques (ART). Here, we present in detail a stochastic optimization procedure that enables one to accurately reconstruct material microstructure from a small number of absorption contrast x-ray tomographic projections. This discrete tomography reconstruction procedure is in contrast to the commonly used FBP and ART, which usually requires thousands of projections for accurate microstructure rendition. The utility of our stochastic procedure is first demonstrated by reconstructing a wide class of two-phase heterogeneous materials including sandstone and hard-particle packing from simulated limited-angle projections in both cone-beam and parallel beam projection geometry. It is then applied to reconstruct tailored Sn-sphere-clay-matrix systems from limited-angle cone-beam data obtained via a lab-scale tomography facility at Arizona State University and parallel-beam synchrotron data obtained at Advanced Photon Source, Argonne National Laboratory. In addition, we examine the information content of tomography data by successively incorporating larger number of projections and quantifying the accuracy of the reconstructions. We show that only a small number of projections (e.g. 20-40, depending on the complexity of the microstructure of interest and desired resolution) are necessary for accurate material reconstructions via our stochastic procedure, which indicates its high efficiency in using limited structural information. The ramifications of the stochastic reconstruction procedure in 4D materials science are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA