Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125868

RESUMO

Efforts are intensifying to identify new biofuel sources in response to the pressing need to mitigate environmental pollutants, such as greenhouse gases, which are key contributors to global warming and various worldwide calamities. Algae and microalgae present themselves as excellent alternatives for solid-gaseous fuel production, given their renewable nature and non-polluting characteristics. However, making biomass production from these organisms economically feasible remains a challenge. This article collates various studies on the use of lignocellulosic waste, transforming it from environmental waste to valuable organic supplements for algae and microalgae cultivation. The focus is on enhancing biomass production and the metabolites derived from these biomasses.


Assuntos
Biocombustíveis , Biomassa , Lignina , Microalgas , Lignina/metabolismo , Microalgas/metabolismo , Microalgas/crescimento & desenvolvimento
2.
Molecules ; 24(12)2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31238580

RESUMO

The objective of this study, for the first time, was to optimize Amazonian cyanobacterial culture conditions for improving cell productivity and lipid content, by analyzing the effect of light intensity and nitrogen concentration, for empirically evaluating biodiesel quality parameters. The strains Synechocystis sp. CACIAM05, Microcystis aeruginosa CACIAM08, Pantanalinema rosaneae CACIAM18, and Limnothrix sp. CACIAM25, were previously identified by morphological and molecular analysis (16S rRNA) and were selected based on their production of chlorophyll a and dry cell weight. Then, factorial planning (22) with central points was applied, with light intensity and NaNO3 concentration as independent variables. As response variables, cell productivity and lipid content were determined. Statistical analysis indicated that for all strains, the independent variables were statistically significant for cell productivity. Analysis of the fatty acid composition demonstrated diversity in the composition of the fatty acid profile from the experimental planning assays of each strain. The Biodiesel Analyzer software predicted the biodiesel quality parameters. CACIAM05 and CACIAM25 obtained better parameters with low levels of light intensity and NaNO3 concentration, whereas CACIAM08 and CACIAM18 obtained better parameters with low NaNO3 concentrations and high luminous intensity.


Assuntos
Biocombustíveis , Cianobactérias/metabolismo , Cianobactérias/efeitos da radiação , Fermentação , Luz , Ácido Nalidíxico/metabolismo , Cianobactérias/efeitos dos fármacos , Ácidos Graxos/metabolismo , Ácido Nalidíxico/farmacologia
3.
Molecules ; 24(1)2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30597829

RESUMO

The buriti palm (Mauritia flexuosa) is a palm tree widely distributed throughout tropical South America. The oil extracted from the fruits of this palm tree is rich in natural antioxidants. The by-products obtained from the buriti palm have social and economic importance as well, hence the interest in adding value to the residue left from refining this oil to obtain biofuel. The process of methyl esters production from the buriti oil soapstock was optimized considering acidulation and esterification. The effect of the molar ratio of sulfuric acid (H2SO4) to soapstock in the range from 0.6 to 1.0 and the reaction time (30⁻90 min) were analyzed. The best conditions for acidulation were molar ratio 0.8 and reaction time of 60 min. Next, the esterification of the fatty acids obtained was performed using methanol and H2SO4 as catalyst. The effects of the molar ratio (9:1⁻27:1), percentage of catalyst (2⁻6%) and reaction time (1⁻14 h) were investigated. The best reaction conditions were: 18:1 molar ratio, 4% catalyst and 14 h reaction time, which resulted in a yield of 92% and a conversion of 99.9%. All the key biodiesel physicochemical characterizations were within the parameters established by the Brazilian standard. The biodiesel obtained presented high ester content (96.6%) and oxidative stability (16.1 h).


Assuntos
Arecaceae/química , Biocombustíveis , Carotenoides/química , Óleo de Palmeira/química , Óleos de Plantas/química , Biotransformação , Catálise , Fenômenos Químicos , Esterificação , Ésteres/química , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA