Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
2.
Sci Rep ; 13(1): 17925, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864005

RESUMO

Online X-ray Fluorescence (XRF) setup was constructed and optimized for analysing the P2O5 content in phosphate slurry (PS). Serval samples were analysed using two configurations of the setup, one with low and vertical flow and another with high and horizontal flow. The mean absolute error achieved through the first configuration was 0.87% and 0.38% using the second configuration. Reference samples were analyzed using the two configurations to construct the calibration curves. The curves cover a concentration range of P2O5 from 13.50 to 18.50% when considering the horizontal flow configuration, and a range of 14.00-15.60% when considering the vertical flow setup. An experimental study was conducted in order to optimize the measurement parameters for the online measurement of P2O5 in the phosphate slurry using the horizontal flow setup. A good signal-to-noise ratio (SNR) of [Formula: see text] was attained using an excitation energy of 20 kV or 25 kV, an excitation current of 600 µA, a distance of 18 mm between the sample and the detector, a measurement time of 60 s per spectrum and the use of an Aluminum filter between the X-ray tube and the measurement window. Online X-ray fluorescence analysis of P entails some challenges due to the low characteristic energy of P, the phosphate slurry matrix and the online analysis mode. However, the outcomes of this study indicate that XRF is a promising technology to meet the requirement for digitalization of chemical analysis of phosphate products.

3.
ACS Omega ; 8(36): 32340-32351, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37720752

RESUMO

Herein, we have characterized in depth the effect of femtosecond (fs)-laser writing on various polydimethylsiloxane (PDMS)-based composites. The study combines systematic and nanoscale characterizations for the PDMS blends that include various photoinitiators (organic and inorganic agents) before and after fs-laser writing. The results exhibit that the photoinitiators can dictate the mechanical properties of the PDMS, in which Young's modulus of PDMS composites has higher elasticity. The study illustrates a major improvement in refractive index change by 15 times higher in the case of PDMS/BP-Ge [benzophenone (BP) allytriethylgermane] and Irgacure 184. Additional enhancement was achieved in the optical performance levels of the PDMS composites (the PDMS composites of Irgacure 184/500, BP-Ge, and Ge-ATEG have a relative difference of less than 5% in comparison with pristine PDMS), which are on par with glasses. This insightful study can guide future investigators in choosing photoinitiators for particular applications in photonics and polymer chemistry.

4.
ACS Appl Mater Interfaces ; 15(30): 36724-36737, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37482898

RESUMO

An in-depth characterization of nanoparticle-doped optical fibers is crucial to understand the potential new functionalities of the engineered glass and thus their applicability fields. The high temperatures of the manufacturing process strongly affect the nanoparticle features, and therefore, their analysis is necessary after fiber drawing. However, the difficulties associated with the use of atomic resolution microscopies to analyze the nanoparticle features in the fiber core, mainly related to sample preparation and expensive costs, usually prevent their study. In this work, we overcome some of those limitations and demonstrate, for the first time, the suitability of structurally and microstructurally studying in detail nanocrystals contained in a fiber core of ∼10 µm by combining confocal Raman microscopy, Rayleigh light-scattering microscopy, and scanning electron microscopy (SEM). A thorough study of cubic-shaped and rod-shaped YPO4 nanocrystals contained in optical fibers reveals their crystallization in tetragonal (t) and monoclinic (m) structures, respectively. The symmetric (ν1) and asymmetric stretching (ν3) Raman modes display a different and remarkable red shift as particle size decreases in both types of nanocrystals, which in the case of the cubic-shaped nanocrystals is fitted to an exponential function along with a Raman peak broadening. Moreover, their Raman dependence vs temperature is evaluated up to 600 °C, observing a phonon softening that follows a linear behavior, which is discussed in detail. These findings add new insights to pure m-YPO4, which was unknown to date, and the REPO4 family and open up new avenues that can be extrapolated to other nanostructures incorporated into optical fiber cores, which will advance progress in the field of nanoparticle-doped optical fibers.

5.
Sci Rep ; 13(1): 8835, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258637

RESUMO

A series of novel Er3+-doped bismuth-germanate glasses containing different tungsten concentrations with a molar composition of 97.5[(75 - x)GeO2-25Bi2O3-(x)WO3]-2Sb2O3-0.5Er2O3 (x = 5, 10, 15, 20, and 25 mol%) were fabricated. Their thermal properties are measured by differential scanning calorimetry. A structural investigation by Raman spectroscopy suggested that changes occurred in the glass network by WO3 incorporation. By laser excitation at 980 nm, a strong emission from Er3+ ions at 1532 nm is observed, while the WO3 addition caused changes in the emission spectra. The emission cross-section spectra of Er3+ are calculated by both McCumber and Füchtbauer-Ladenburg theories and their comparison showed these theories yielded slightly different results, but in both cases, the calculations showed that a gain signal in L-band can be achieved when 30% of the Er3+ ions are at the excited state. This study proves that the Er3+-doped bismuth-germanate glasses are suitable for optical fiber amplifier applications operating at C- and L-band.

6.
Sci Rep ; 13(1): 5436, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012273

RESUMO

We demonstrate laser induced cooling in ytterbium doped silica (SiO2) glass with alumina, yttria co-doping (GAYY-Aluminum: Yttrium: Ytterbium Glass) fabricated using the modified chemical vapour deposition (MCVD) technique. A maximum temperature reduction by - 0.9 K from room temperature (296 K) at atmospheric pressure was achieved using only 6.5 W of 1029 nm laser radiation. The developed fabrication process allows us to incorporate ytterbium at concentration of 4 × 1026 ions/m3 which is the highest value reported for laser cooling without clustering or lifetime shortening, as well as to reach a very low background absorptive loss of 10 dB/km. The numerical simulation of temperature change versus pump power well agrees with the observation and predicts, for the same conditions, a temperature reduction of 4 K from room temperature in a vacuum. This novel silica glass has a high potential for a vast number of applications in laser cooling such as radiation-balanced amplifiers and high-power lasers including fiber lasers.

7.
Sci Rep ; 13(1): 3697, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36878977

RESUMO

The development of efficient and compact photonic systems in support of mid-infrared integrated optics is currently facing several challenges. To date, most mid-infrared glass-based devices are employing fluoride or chalcogenide glasses (FCGs). Although the commercialization of FCGs-based optical devices has rapidly grown during the last decade, their development is rather cumbersome due to either poor crystallization and hygroscopicity resilience or poor mechanical-thermal properties of the FCGs. To overcome these issues, the parallel development of heavy-metal oxide optical fiber from the barium-germanium-gallium oxide vitreous system (BGG) has revealed a promising alternative. However, over 30 years of fiber fabrication optimization, the final missing step of drawing BGG fibers with acceptable losses for meters-long active and passive optical devices had not yet been reached. In this article, we first identify the three most important factors that prevent the fabrication of low-loss BGG fibers i.e., surface quality, volumic striae and glass thermal-darkening. Each of the three factors is then addressed in setting up a protocol enabling the fabrication of low-loss optical fibers from gallium-rich BGG glass compositions. Accordingly, to the best of our knowledge, we report the lowest losses ever measured in a BGG glass fiber i.e., down to 200 dB km-1 at 1350 nm.

9.
Sci Rep ; 12(1): 19311, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369471

RESUMO

In this paper, thermally stable lead-bismuth-borate glasses were doped with 0.5 mol% of Pr3+ ions at several concentration levels of Yb3+ ions. Structural characterizations were performed via Raman, differential scanning calorimetry, optical absorption and fluorescence spectra. The Judd-Ofelt intensity parameter, [Formula: see text], of Pr3+ doped glass was comparatively higher than those from reported ones, which reflects the increase of co-valency and asymmetry of chemical bonds in the local environment of Pr3+. Near-infrared emission in 900-2200 nm wavelength range was recorded through 443 nm blue laser pumping. Visible to near-IR quantum cutting and concentration quenching mechanisms were discussed to understand the luminescent behaviour. Intense IR emission ([Formula: see text] features generated by absorbing one visible photon leads to quantum efficiencies close to 128% in Pr3+/Yb3+ co-doped samples which may improve the solar spectrum absorption and accordingly, increase the efficiency of c-Si solar cells. Emission cross-section, lifetime, figure of merit and gain bandwidth corresponding to Pr3+: [Formula: see text] ([Formula: see text]m) were comparatively reported suggesting that the glass with molar composition 0.5Pr3+/0.1Yb3+ might be a potential candidate for [Formula: see text]m laser operation with low pump threshold.

10.
Sensors (Basel) ; 22(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36236244

RESUMO

An in-line digital optical sensor was proposed. It was built from a tapered depressed-cladding single-mode fiber and modeled as a coaxial Mach-Zehnder interferometer. The principle of operation of the optical digital sensor is based on the computation of the number of optical power transfer turning points (PTTP) from the transmission data of the component. Biconic tapers with high values of PTTP, high spectral resolution, high extinction ratio, and low insertion loss were modeled, fabricated, and characterized. As a proof of concept, an in-line digital strain sensor was fabricated and characterized. It presents a free spectral range of 1.3 nm, and produced 96 PTTP, at λ0 = 1.55 µm, under stretch of ΔL = 707 µm, therefore producing a digital resolution of 7.4 µm/PTTP. The sensor also produced a quasi-symmetric response to stretch and compression.


Assuntos
Interferometria , Fibras Ópticas
11.
Opt Express ; 30(12): 20288-20297, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36224778

RESUMO

We demonstrate chalcogenide optical fiber couplers with a power-dependent coupling coefficient. The couplers are designed and fabricated using an As2Se3 fiber and characterized at a wavelength of 1938 nm, leading to a critical power of 126 W, the lowest ever reported for any optical fiber coupler. These nonlinear couplers enable all-optical switching and will be useful for passive mode-locking over a wide wavelength range from the telecommunication band to the mid-infrared.

12.
Sci Rep ; 12(1): 17823, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36280776

RESUMO

Phosphate slurries are studied using the XRF technique and the effect of the particle sizes and the water content parameters are analyzed and reported for the first time. Samples of the phosphate slurry with different particle sizes (425 µm, 300 µm, 250 µm, 200 µm, 160 µm and 106 µm) and different water contents (30%, 40%, 50%, 60%) were analyzed using an energy-dispersive X-ray spectrometer (EDXRF). The results show that the relative error of measurement varies with the particle size of the analyzed sample, the water content and the element measured. The relative error increases with the increase of the particle size for the compounds P2O5, Al2O3, K2O, Cr2O3, Fe2O3 and Sr. The ratio between the relative errors related to the maximum and minimum grain sizes was 1.50 for P2O5, 4.01 for Al2O3, 15.58 for K2O, 1.22 for Cr2O3, 1.51 for Fe2O3 and 1.11 for Sr. Alternatively, an opposite evolution has been observed in the case of compounds CaO and SiO2. The relative error increases with increasing water content for all compounds existing in the slurry. Depending on the measured compound, the relative error increases by a factor that varies between 1.39 and 2.39. In the case of P2O5, the results do not show a clear correlation between the measurement error and the water content. A study will be conducted to investigate the effect of particle size and water content on XRF measurements in the case of phosphate slurry, aiming to develop an online XRF analyzer system for phosphate slurry.

13.
Opt Express ; 30(11): 17824-17835, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221595

RESUMO

We demonstrate for the first time that a Bragg grating can be written over a large area inside the cladding of a multicore erbium-doped fiber amplifier to increase the power conversion efficiency (PCE) by recycling the output pump power. Our results indicate that a Bragg grating covering ∼25% of the cladding area allows us to recycle 19% of the output pump power which leads to a relative increase of the PCE by 16% for an input pump power of 10.6 W in the specific case of an eight-core erbium-doped fiber with a length of 20.3 m and one core loaded with an input signal power of 1.5 dBm.

15.
Sensors (Basel) ; 22(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35684691

RESUMO

A flexible sinusoidal-shaped antenna sensor is introduced in this work, which is a modified half-wave dipole that can be used for strain sensing applications. The presented antenna is an improved extension of the previously introduced antenna sensor for respiration monitoring. The electrical and radiative characteristics of the sinusoidal antenna and the effects of the geometrical factors are studied. An approach is provided for designing the antenna, and equations are introduced to estimate the geometrical parameters based on desired electrical specifications. It is shown that the antenna sensor can be designed to have up to 5.5 times more sensitivity compared to the last generation of the antenna sensor previously introduced for respiration monitoring. The conductive polymer material used to fabricate the new antenna makes it more flexible and durable compared to the previous generation of antenna sensors made of glass-based material. Finally, a reference antenna made of copper and an antenna sensor made of the conductive polymer are fabricated, and their electrical characteristics are analyzed in free space and over the body.


Assuntos
Dispositivos Eletrônicos Vestíveis , Condutividade Elétrica , Eletricidade , Monitorização Fisiológica , Polímeros
16.
Sci Rep ; 12(1): 1623, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35102176

RESUMO

This study aims at identifying compounds incorporated into Polydimethylsiloxane (PDMS) which produce large refractive index change under fs laser exposition, potentially leading to optimal writing of waveguides or photonic devices in such a soft host. Germanium derivative, titania and zirconite derivatives, benzophenone (Bp), irgacure-184/500/1173 and 2959 are investigated. We show a mapping of the RI index change relative to the writing speed (1 to 40 mm/s), the repetition rate (606 to 101 kHz) and the number of passes (1 to 8) from which we establish quantitative parameters to allow the comparison between samples. We show that the organic materials, especially irgacure-184 and benzophenone yield a significantly higher maximum refractive index change in the order of 10-2. We also show that the strongest photosensitivity is achieved with a mixture of organic/organo-metallic material of Bp + Ge. We report a synergetic effect on photosensitivity of this novel mixture.

17.
Opt Lett ; 46(21): 5513-5516, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724514

RESUMO

Emerging applications in the mid-infrared (MIR) stimulate the growth and development of novel optical light sources. Soliton self-frequency shift (SSFS) in soft glass fiber currently shows great potential as an efficient approach toward the generation of broadly tunable femtosecond pulses in the MIR. In this work, we demonstrate a highly efficient tunable soliton source based on SSFS in chalcogenide glass. We show a simple and fully fiberized system to generate these continuously tunable Raman solitons over a broad spectral range of 2.047-2.667 µm, which consumes no more than 87 pJ per pulse. The spectral measurements suggest that the generated pulses are as short as 62 fs with a maximum power conversion efficiency of 43%. This result is realized thanks to an 8 cm long As2S3 microstructure optical fiber tapered into a microwire. Thanks to their broad transparency, their high nonlinearity, and their adjustable chromatic dispersion, chalcogenide microwires are promising components for the development of compact and highly efficient MIR optical sources with low power consumption.

18.
Inorg Chem ; 60(16): 12339-12354, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34346214

RESUMO

SrREGa3O7 melilite ceramics with large rare-earth elements (RE = La to Y) are famous materials especially known for their luminescence properties. Using an innovative approach, the full and congruent crystallization from glass process, SrREGa3O7 transparent polycrystalline ceramics with small rare earth elements (RE = Dy-Lu and Y) have been successfully synthesized and characterized. Interestingly, compared to the classic tetragonal (P4̅21m) melilite structure composed of mixed Sr/RE cationic sites, these compositions can crystallize in a 3 × 1 × 1 orthorhombic (P21212) superstructure. A detailed study of the superstructure, investigated using different techniques (synchrotron and neutron powder diffraction, STEM-HAADF imaging, and EDS mapping), highlights the existence of a Sr/RE cation ordering favored by a large Sr/RE size mismatch and a sufficiently small RE cation. An appropriate control of the synthesis conditions through glass crystallization enables the formation of the desired polymorphs, either ordered or disordered. The influence of this tailored cationic ordering/disordering on the RE luminescent spectroscopic properties have been investigated. A stronger structuration of the RE emission band is observed in the ordered ceramic compared to the disordered ceramic and the glass, whose band shapes are very similar, indicating that the RE environments in the glass and disordered ceramic are close.

19.
Sci Rep ; 11(1): 16803, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413334

RESUMO

We report the structural and optical properties of Nd:YAB (NdxY1-x Al3(BO3)4)-nanoparticle-doped PDMS elastomer films for random lasing (RL) applications. Nanoparticles with Nd ratios of x = 0.2, 0.4, 0.6, 0.8, and 1.0 were prepared and then incorporated into the PDMS elastomer to control the optical gain density and scattering center content over a wide range. The morphology and thermal stability of the elastomer composites were studied. A systematic investigation of the lasing wavelength, threshold, and linewidth of the laser was carried out by tailoring the concentration and optical gain of the scattering centers. The minimum threshold and linewidth were found to be 0.13 mJ and 0.8 nm for x = 1 and 0.8. Furthermore, we demonstrated that the RL intensity was easily tuned by controlling the degree of mechanical stretching, with strain reaching up to 300%. A strong, repeatable lasing spectrum over ~ 50 cycles of applied strain was observed, which demonstrates the high reproducibility and robustness of the RL. In consideration for biomedical applications that require long-term RL stability, we studied the intensity fluctuation of the RL emission, and confirmed that it followed Lévy-like statistics. Our work highlights the importance of using rare-earth doped nanoparticles with polymers for RL applications.

20.
IEEE Trans Biomed Circuits Syst ; 15(5): 938-948, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34432634

RESUMO

In this work, we present a new sensing approach for aqueous samples based on the microscope-FTIR spectrometer and applied for neurotransmitters. Our contribution in this work consists of a new sample handling system for the microscope-FTIR spectrometer based on a total reflective mirror, a heated hydrophobic layer for solvent removal/evaporation and sample confinement and a microfluidic system that handles sample injection unlike standard sample handling system which was based only on a total reflective mirror. In addition, another part of our contribution consists of proposing a new algorithm to extract molecular composition of the solution with high estimation ratios and based on the analysis of detected peaks on IR spectra. The data acquired from the microscope-FTIR spectrometer was analyzed by a newly developed algorithm to identify each neurotransmitter in homogeneous and non-homogeneous solutions with high selectivity. We used six neurotransmitter molecules (Dopamine hydrochloride, L-Ascorbic acid, Acetylcholine chloride, y-Aminobutyric, Glycine and L-Glutamic acid). The results obtained based on the algorithm developed showed that, using the new system, the six neurotransmitters can be identified in homogeneous and mixture solutions with an estimation ratio range of 88.8%-100% for Dopamine hydrochloride, 80%-100% for L-Ascorbic acid, 75%-100% for Acetylcholine chloride, 75%-100% for L-Glutamic, 77.7%-100% for y-Aminobutyric and 75%-100% for Glycine.


Assuntos
Dopamina , Neurotransmissores , Ácido Glutâmico , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA