Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 415(18): 4479-4486, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36907920

RESUMO

Single-molecule fluorescence microscopy with "turn-on" dyes that change fluorescent state after a reaction report on the chemistry of interfaces relevant to analytical and bioanalytical chemistry. Paramount to accurately understanding the phenomena at the ultimate detection limit of a single molecule is ensuring fluorophore properties such as diffusion do not obscure the chemical reaction of interest. Here, we develop Monte Carlo simulations of a dye that undergoes reduction to turn-on at the cathode of a corroded iron surface taking into account the diffusion of the dye molecules in a total internal reflection fluorescence (TIRF) excitation volume, location of the cathode, and chemical reactions. We find, somewhat counterintuitively, that a fast diffusion coefficient of D = 108 nm2/s, corresponding to the dye in aqueous solution, accurately reports the location of single reaction sites. The dyes turn on and are present for the acquisition of a single frame allowing for localization before diffusing out of the thin TIRF excitation volume axially. Previously turned-on (i.e., activated) dyes can also randomly hit the surface surrounding the reaction site leading to a uniform increase in the background. Using concentrations that lead to high turnover rates at the reaction site can achieve signal-to-background ratios of ~100 in our simulation. Therefore, the interplay between diffusion, turn-on reaction rate, and concentration of the dye must be strategically considered to produce accurate images of reaction locations. This work demonstrates that modeling can assist in the design of single-molecule microscopy experiments to understand interfaces related to analytical chemistry such as electrode, nanoparticle, and sensor surfaces.


Assuntos
Corantes Fluorescentes , Corantes Fluorescentes/química , Espectrometria de Fluorescência/métodos , Simulação por Computador , Microscopia de Fluorescência/métodos , Difusão
2.
ACS Appl Mater Interfaces ; 13(1): 2000-2006, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33356107

RESUMO

We demonstrate that fluorogenic molecules that "turn-on" upon redox reactions can sense the corrosion of iron at the single-molecule scale. We first observe the cathodic reduction of nonfluorescent resazurin to fluorescent resorufin in the presence of iron in bulk solution. The progression of corrosion is seen as a color change that is quantified as an increase in fluorescence emission intensity. We show that the fluorescence signal is directly related to the amount of electrons that are available due to corrosion progression and can be used to quantify the catalyzed increase in the rate of corrosion by NaCl. By using modern fluorescence microscopy instrumentation we detect real-time, single-molecule "turn-on" of resazurin by corrosion, overcoming the previous limitations of microscopic fluorescence corrosion detection. Analysis of the total number of individual resorufin molecules shows heterogeneities during the progression of corrosion that are not observed in ensemble measurements. Finally, we discuss the potential for single-molecule kinetic and super-resolution localization analysis of corrosion based on our findings. Single-molecule florescence microscopy opens up a new spatiotemporal regime to study corrosion at the molecular level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA