Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38906672

RESUMO

Giant cell arteritis (GCA) is the most common primary large vessel systemic vasculitis in the western world. Even though the involvement of scalp and intracranial vessels has received much attention in the neuroradiology literature, GCA, being a systemic vasculitis can involve multiple other larger vessels including aorta and its major head and neck branches. Herein, the authors present a pictorial review of the various cranial, extracranial and orbital manifestations of GCA. An increased awareness of this entity may help with timely and accurate diagnosis, helping expedite therapy and preventing serious complications.ABBREVIATIONS: ACR= American College of Rheumatology, AION= Anterior Ischemic Optic Neuropathy, EULAR= European League Against Rheumatism, GCA= Giant Cell Arteritis, LV-GCA= Large vessel GCA, PMR= Polymyalgia Rheumatica, US= Ultrasound, VWI= Vessel Wall Imaging.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38889969

RESUMO

BACKGROUND AND PURPOSE: Intra-cranial vessel wall imaging (IC-VWI) is technically challenging to implement, given the simultaneous requirements of high spatial resolution, excellent blood and CSF signal suppression and clinically acceptable gradient times. Herein, we present our preliminary findings on the evaluation of a deep learning optimized sequence using T1 weighted imaging. MATERIALS AND METHODS: Clinical and optimized Deep learning-based image reconstruction (DLBIR) T1 SPACE sequences were evaluated, comparing non-contrast sequences in ten healthy controls and post-contrast sequences in five consecutive patients. Images were reviewed on a Likert-like scale by four fellowship-trained neuroradiologists. Scores (range 1-4) were separately assigned for eleven vessel segments in terms of vessel wall and lumen delineation. Additionally, images were evaluated in terms of overall background noise, image sharpness and homogenous CSF signal. Segment-wise scores were compared using paired samples t-tests. RESULTS: The scan time for the clinical and DLBIR sequences were 7:26 minutes and 5:23 minutes respectively. DLBIR images showed consistently higher wall signal and lumen visualization scores, with the differences being statistically significant in the majority of vessel segments on both pre and post contrast images. DLBIR images had lower background noise, higher image sharpness and uniform CSF signal. Depiction of intracranial pathologies was better or similar on the DLBIR images. CONCLUSIONS: Our preliminary findings suggest that DLBIR optimized IC-VWI sequences may be helpful in achieving shorter gradient times with improved vessel wall visualization and overall image quality. These improvements may help with wider adoption of ICVWI in clinical practice and should be further validated on a larger cohort. ABBREVIATIONS: DL deep learning; VWI = vessel wall imaging.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38754997

RESUMO

BACKGROUND AND PURPOSE: Progressive MS is typically heralded by a myelopathic pattern of asymmetric progressive motor weakness. Focal individual "critical" demyelinating spinal cord lesions anatomically associated with progressive motor impairment may be a compelling explanation for this clinical presentation as described in progressive solitary sclerosis (single CNS demyelinating lesion), progressive demyelination with highly restricted MR imaging lesion burden (2-5 total CNS demyelinating lesions; progressive paucisclerotic MS), and progressive, exclusively unilateral hemi- or monoparetic MS (>5 CNS demyelinating progressive unilateral hemi- or monoparetic MS [PUHMS] lesions). Critical demyelinating lesions appear strikingly similar across these cohorts, and we describe their specific spinal cord MR imaging characteristics. MATERIALS AND METHODS: We performed a retrospective, observational MR imaging study comparing spinal cord critical demyelinating lesions anatomically associated with progressive motor impairment with any additional "noncritical" (not anatomically associated with progressive motor impairment) spinal cord demyelinating lesions. All spinal cord MR images (302 cervical and 91 thoracic) were reviewed by an experienced neuroradiologist with final radiologic assessment on the most recent MR imaging. Anatomic association with clinical progressive motor impairment was confirmed independently by MS subspecialists. RESULTS: Ninety-one individuals (PUHMS, 37 [41%], progressive paucisclerosis 35 [38%], progressive solitary sclerosis 19 [21%]) with 91 critical and 98 noncritical spinal cord MR imaging demyelinating lesions were evaluated. MR imaging characteristics that favored critical spinal cord demyelinating lesions over noncritical lesions included moderate-to-severe, focal, lesion-associated spinal cord atrophy: 41/91 (45%) versus 0/98 (0%) (OR, 161.91; 9.43 to >999.9); lateral column axial location (OR, 10.43; 3.88-28.07); central region (OR, 3.23; 1.78-5.88); ventral column (OR, 2.98; 1.55-5.72); and larger lesion size of the axial width (OR, 2.01;1.49-2.72), transverse axial size (OR, 1.66; 1.36-2.01), or lesion area (OR, 1.14; 1.08-1.2). Multiple regression analysis revealed focal atrophy and lateral axial location as having the strongest association with critical demyelinating lesions. CONCLUSIONS: Focal, lesion-associated atrophy, lateral column axial location, and larger lesion size are spinal cord MR imaging characteristics of critical demyelinating lesions. The presence of critical demyelinating lesions should be sought as these features may be associated with the development of progressive motor impairment in MS.

4.
AJNR Am J Neuroradiol ; 45(4): 468-474, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38485198

RESUMO

High-grade astrocytoma with piloid features (HGAP) is a recently identified brain tumor characterized by a distinct DNA methylation profile. Predominantly located in the posterior fossa of adults, HGAP is notably prevalent in individuals with neurofibromatosis type 1. We present an image-centric review of HGAP and explore the association between HGAP and neurofibromatosis type 1. Data were collected from 8 HGAP patients treated at two tertiary care institutions between January 2020 and October 2023. Demographic details, clinical records, management, and tumor molecular profiles were analyzed. Tumor characteristics, including location and imaging features on MR imaging, were reviewed. Clinical or imaging features suggestive of neurofibromatosis 1 or the presence of NF1 gene alteration were documented. The mean age at presentation was 45.5 years (male/female = 5:3). Tumors were midline, localized in the posterior fossa (n = 4), diencephalic/thalamic (n = 2), and spinal cord (n = 2). HGAP lesions were T1 hypointense, T2-hyperintense, mostly without diffusion restriction, predominantly peripheral irregular enhancement with central necrosis (n = 3) followed by mixed heterogeneous enhancement (n = 2). Two NF1 mutation carriers showed signs of neurofibromatosis type 1 before HGAP diagnosis, with one diagnosed during HGAP evaluation, strengthening the HGAP-NF1 link, particularly in patients with posterior fossa masses. All tumors were IDH1 wild-type, often with ATRX, CDKN2A/B, and NF1 gene alteration. Six patients underwent surgical resection followed by adjuvant chemoradiation. Six patients were alive, and two died during the last follow-up. Histone H3 mutations were not detected in our cohort, such as the common H3K27M typically seen in diffuse midline gliomas, linked to aggressive clinical behavior and poor prognosis. HGAP lesions may involve the brain or spine and tend to be midline or paramedian in location. Underlying neurofibromatosis type 1 diagnosis or imaging findings are important diagnostic cues.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Neurofibromatose 1 , Adulto , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Neurofibromatose 1/diagnóstico por imagem , Neurofibromatose 1/patologia , Astrocitoma/diagnóstico por imagem , Astrocitoma/genética , Astrocitoma/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Histonas/genética , Encéfalo/patologia , Mutação
5.
AJNR Am J Neuroradiol ; 45(5): 662-667, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38485194

RESUMO

BACKGROUND AND PURPOSE: Spontaneous intracranial hypotension is a condition resulting from a leak of CSF from the spinal canal arising independent of a medical procedure. Spontaneous intracranial hypotension can present with normal brain MR imaging findings and nonspecific symptoms, leading to the underdiagnosis in some patients and unnecessary invasive myelography in others who are found not to have the condition. Given the likelihood that spontaneous intracranial hypotension alters intracranial biomechanics, the goal of this study was to evaluate MR elastography as a potential noninvasive test to diagnose the condition. MATERIALS AND METHODS: We performed MR elastography in 15 patients with confirmed spontaneous intracranial hypotension from September 2022 to April 2023. Age, sex, symptom duration, and brain MR imaging Bern score were collected. MR elastography data were used to compute stiffness and damping ratio maps, and voxelwise modeling was performed to detect clusters of significant differences in mechanical properties between patients with spontaneous intracranial hypotension and healthy control participants. To evaluate diagnostic accuracy, we summarized each examination by 2 spatial pattern scores (one each for stiffness and damping ratio) and evaluated group-wise discrimination by receiver operating characteristic curve analysis. RESULTS: Patients with spontaneous intracranial hypotension exhibited significant differences in both stiffness and damping ratio (false discovery rate-corrected, Q < 0.05). Pattern analysis discriminated patients with spontaneous intracranial hypotension from healthy controls with an area under the curve of 0.97 overall, and the area under the curve was 0.97 in those without MR imaging findings of spontaneous intracranial hypotension. CONCLUSIONS: Results from this pilot study demonstrate MR elastography as a potential imaging biomarker and a noninvasive method for diagnosing spontaneous intracranial hypotension, including patients with normal brain MR imaging findings.


Assuntos
Técnicas de Imagem por Elasticidade , Hipotensão Intracraniana , Imageamento por Ressonância Magnética , Humanos , Hipotensão Intracraniana/diagnóstico por imagem , Técnicas de Imagem por Elasticidade/métodos , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética/métodos , Idoso , Adulto Jovem
6.
Artigo em Inglês | MEDLINE | ID: mdl-38383054

RESUMO

Temporal lobe epilepsy is a common form of epilepsy that is often associated with hippocampal sclerosis (HS). Although HS is commonly considered a binary assessment in radiological evaluation, it is known that histopathological changes occur in distinct clusters. Some subtypes of HS only affect certain subfields, resulting in minimal changes to the overall volume of the hippocampus. This is likely a major reason why whole hippocampal volumetrics have underperformed versus expert readers. With recent advancements in MRI technology, it is now possible to characterize the substructure of the hippocampus more accurately. However, this is not consistently addressed in radiographic evaluations. The histological subtype of HS is critical for prognosis and treatment decision making, necessitating improved radiological classification of HS. The International League Against Epilepsy (ILAE) has issued a consensus classification scheme for subtyping HS histopathological changes. This review aims to explore how the ILAE subtypes of HS correlate with radiographic findings, introduce a grading system that integrates radiological and pathological reporting in HS, and outline an approach to detecting HS subtypes using MRI. This framework will not only benefit current clinical evaluations, but also enhance future studies involving high-resolution MRI in temporal lobe epilepsy.ABBREVIATIONS: CA = cornu ammonis; DG = dentate gyrus; HS = hippocampal sclerosis; ILAE = International League Against Epilepsy; SRLM = strata radiatum, lacunosum, and moleculare layers; TLE = temporal lobe epilepsy.

7.
Otolaryngol Head Neck Surg ; 170(1): 187-194, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37582349

RESUMO

OBJECTIVE: To evaluate the magnetic resonance (MR) image artifact and image distortion associated with the two transcutaneous bone conduction implants currently available in the United States. STUDY DESIGN: Cadaveric study. METHODS: Two cadaveric head specimens (1 male, 1 female) were unilaterally implanted according to manufacturer guidelines and underwent MR imaging (General Electric and Siemens 1.5 T scanners) under the following device conditions: (1) no device, (2) Cochlear Osia with magnet and headwrap, (3) Cochlear Osia without magnet, and (4) MED-EL Bonebridge with magnet. Maximum metal mitigation techniques were employed in all conditions, and identical sequences were obtained. Blinded image scoring (diagnostic vs nondiagnostic image) was performed by experienced neuroradiologists according to anatomical subsites. RESULTS: All device conditions produced artifact and image distortion. The Osia with magnet produced diagnostic T1- and T2-weighted images of the ipsilateral temporal bone, however, non-echo planar imaging diffusion-weighted imaging (DWI) was nondiagnostic. The Osia without magnet scanned on the Siemens MR imaging demonstrated the least amount of artifact and was the only condition that allowed for diagnostic imaging of the ipsilateral temporal bone on DWI. The Bonebridge produced a large area of artifact and distortion with the involvement of the ipsilateral and contralateral temporal bones. CONCLUSION: In summary, of the three device conditions (Osia with magnet, Osia without magnet, and Bonebridge), Osia without magnet offered the least amount of artifact and distortion and was the only condition in which diagnostic DWI was available for the middle ear and mastoid regions on the Siemens MR imaging scanner.


Assuntos
Colesteatoma , Implantes Cocleares , Neuroma Acústico , Humanos , Masculino , Feminino , Neuroma Acústico/diagnóstico por imagem , Artefatos , Condução Óssea , Imageamento por Ressonância Magnética/métodos , Cadáver
8.
Neuroradiol J ; : 19714009231224413, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38146822

RESUMO

CT myelography has been traditionally used to evaluate post-operative paraspinal fluid collections to discern CSF leaking into a pseudomeningocele versus a contained seroma. Rather than performing a lumbar puncture and injecting intrathecal contrast for myelography, we present the first report of direct contrast injection into a post-operative paraspinal pseudomeningocele for CSF leak confirmation and localization. This is a simple procedure that has several advantages over a conventional CT myelogram for the evaluation of post-operative paraspinal fluid collections.

9.
Clin Nucl Med ; 48(11): 956-957, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37703448

RESUMO

ABSTRACT: Leucine-rich glioma inactivated 1 autoimmune encephalitis is a treatable cause of autoimmune epilepsy associated with faciobrachial dystonic seizures-a rare form of epilepsy with frequent brief seizures primarily affecting the arm and face. We report a case with characteristic imaging findings. 18 F-FDG PET/CT demonstrated severe hypometabolism in the left basal ganglia, a regional abnormality associated with leucine-rich glioma inactivated 1 encephalitis.


Assuntos
Glioma , Encefalite Límbica , Humanos , Autoanticorpos , Leucina , Peptídeos e Proteínas de Sinalização Intracelular , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/efeitos adversos , Convulsões/complicações , Glioma/complicações
10.
Cancers (Basel) ; 15(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37760443

RESUMO

Functional magnetic resonance imaging (fMRI) with blood oxygen level-dependent (BOLD) technique is useful for preoperative mapping of brain functional networks in tumor patients, providing reliable in vivo detection of eloquent cortex to help reduce the risk of postsurgical morbidity. BOLD task-based fMRI (tb-fMRI) is the most often used noninvasive method that can reliably map cortical networks, including those associated with sensorimotor, language, and visual functions. BOLD resting-state fMRI (rs-fMRI) is emerging as a promising ancillary tool for visualization of diverse functional networks. Although fMRI is a powerful tool that can be used as an adjunct for brain tumor surgery planning, it has some constraints that should be taken into consideration for proper clinical interpretation. BOLD fMRI interpretation may be limited by neurovascular uncoupling (NVU) induced by brain tumors. Cerebrovascular reactivity (CVR) mapping obtained using breath-hold methods is an effective method for evaluating NVU potential.

11.
Front Neurol ; 14: 1221255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745671

RESUMO

Background: The Alberta Stroke Program Early CT Score (ASPECTS) is used to quantify the extent of injury to the brain following acute ischemic stroke (AIS) and to inform treatment decisions. The e-ASPECTS software uses artificial intelligence methods to automatically process non-contrast CT (NCCT) brain scans from patients with AIS affecting the middle cerebral artery (MCA) territory and generate an ASPECTS. This study aimed to evaluate the impact of e-ASPECTS (Brainomix, Oxford, UK) on the performance of US physicians compared to a consensus ground truth. Methods: The study used a multi-reader, multi-case design. A total of 10 US board-certified physicians (neurologists and neuroradiologists) scored 54 NCCT brain scans of patients with AIS affecting the MCA territory. Each reader scored each scan on two occasions: once with and once without reference to the e-ASPECTS software, in random order. Agreement with a reference standard (expert consensus read with reference to follow-up imaging) was evaluated with and without software support. Results: A comparison of the area under the curve (AUC) for each reader showed a significant improvement from 0.81 to 0.83 (p = 0.028) with the support of the e-ASPECTS tool. The agreement of reader ASPECTS scoring with the reference standard was improved with e-ASPECTS compared to unassisted reading of scans: Cohen's kappa improved from 0.60 to 0.65, and the case-based weighted Kappa improved from 0.70 to 0.81. Conclusion: Decision support with the e-ASPECTS software significantly improves the accuracy of ASPECTS scoring, even by expert US neurologists and neuroradiologists.

12.
J Neural Eng ; 20(4)2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37536320

RESUMO

Objective.Long-term intracranial electroencephalography (iEEG) in freely behaving animals provides valuable electrophysiological information and when correlated with animal behavior is useful for investigating brain function.Approach.Here we develop and validate an automated iEEG-based sleep-wake classifier for canines using expert sleep labels derived from simultaneous video, accelerometry, scalp electroencephalography (EEG) and iEEG monitoring. The video, scalp EEG, and accelerometry recordings were manually scored by a board-certified sleep expert into sleep-wake state categories: awake, rapid-eye-movement (REM) sleep, and three non-REM sleep categories (NREM1, 2, 3). The expert labels were used to train, validate, and test a fully automated iEEG sleep-wake classifier in freely behaving canines.Main results. The iEEG-based classifier achieved an overall classification accuracy of 0.878 ± 0.055 and a Cohen's Kappa score of 0.786 ± 0.090. Subsequently, we used the automated iEEG-based classifier to investigate sleep over multiple weeks in freely behaving canines. The results show that the dogs spend a significant amount of the day sleeping, but the characteristics of daytime nap sleep differ from night-time sleep in three key characteristics: during the day, there are fewer NREM sleep cycles (10.81 ± 2.34 cycles per day vs. 22.39 ± 3.88 cycles per night;p< 0.001), shorter NREM cycle durations (13.83 ± 8.50 min per day vs. 15.09 ± 8.55 min per night;p< 0.001), and dogs spend a greater proportion of sleep time in NREM sleep and less time in REM sleep compared to night-time sleep (NREM 0.88 ± 0.09, REM 0.12 ± 0.09 per day vs. NREM 0.80 ± 0.08, REM 0.20 ± 0.08 per night;p< 0.001).Significance.These results support the feasibility and accuracy of automated iEEG sleep-wake classifiers for canine behavior investigations.


Assuntos
Fases do Sono , Sono , Cães , Animais , Fases do Sono/fisiologia , Sono/fisiologia , Sono REM/fisiologia , Eletroencefalografia/métodos , Eletrocorticografia , Vigília/fisiologia
13.
World J Nucl Med ; 22(2): 78-86, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37223623

RESUMO

Epilepsy neuroimaging assessment requires exceptional anatomic detail, physiologic and metabolic information. Magnetic resonance (MR) protocols are often time-consuming necessitating sedation and positron emission tomography (PET)/computed tomography (CT) comes with a significant radiation dose. Hybrid PET/MRI protocols allow for exquisite assessment of brain anatomy and structural abnormalities, in addition to metabolic information in a single, convenient imaging session, which limits radiation dose, sedation time, and sedation events. Brain PET/MRI has proven especially useful for accurate localization of epileptogenic zones in pediatric seizure cases, providing critical additional information and guiding surgical decision making in medically refractory cases. Accurate localization of seizure focus is necessary to limit the extent of the surgical resection, preserve healthy brain tissue, and achieve seizure control. This review provides a systematic overview with illustrative examples demonstrating the applications and diagnostic utility of PET/MRI in pediatric epilepsy.

14.
Neuroradiol J ; 36(6): 665-673, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37118867

RESUMO

BACKGROUND AND PURPOSE: : Post-shunt MRI is usually performed at 1.5T under the general assumption that shunt-related susceptibility artifacts would be greater at higher field strengths. PURPOSE: The purpose is to show that imaging post-shunt idiopathic normal pressure hydrocephalus (iNPH) patients at 3T is feasible and with reduced artifacts as compared to 1.5T. METHODS: We manually measured transverse dimensions of artifact at the levels of lateral ventricles, cerebral aqueduct, and cerebellar hemisphere. Areas/volumes of artifacts were calculated assuming an elliptic/ellipsoid shape. Relative extent of shunt-related artifact between field strengths was rated by 3 readers on a 5-point Likert scale. A Wilcoxon Signed Rank Test was used to compare artifact at 1.5T vs 3T for each sequence, with a significance level set at p < 0.05. RESULTS: Artifact areas were calculated in 22 iNPH patients; artifacts were on average smaller at 3T vs 1.5T on MPRAGE, DWI, and GRE sequences. On T2 FLAIR and T2 FSE, artifacts at 3T were larger than 1.5T. On the qualitative analysis, artifact effects were less at 3T vs 1.5T on DWI, greater at 3T on T2 FSE, and had mixed results on GRE. CONCLUSION: Our results indicate feasibility of post-shunt imaging with the CERTAS Plus valve at 3T based on shunt-related artifact that is less than or equal in extent to that on 1.5T on most standard clinical imaging sequences. Our findings, corroborated by the qualitative image review, suggest that dedicated clinical imaging sequences for devices may allow for reduction in artifact extent at both 1.5T and 3T.


Assuntos
Artefatos , Hidrocefalia de Pressão Normal , Humanos , Hidrocefalia de Pressão Normal/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador/métodos
15.
BMJ Case Rep ; 15(4)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35396239

RESUMO

A previously healthy and active middle-aged woman acquired COVID-19 as an occupational exposure with subsequent persistent post-COVID-19 symptoms including headache, dyspnoea on exertion, chest pressure, tachycardia, anosmia, parosmia, persistent myalgia, vertigo, cognitive decline and fatigue. She presented to a tertiary medical centre for further evaluation after 9 months of persistent symptoms and had a largely unremarkable workup with the exception of a persistently elevated monocyte chemoattractant protein 1, blunted cardiovagal response and non-specific scattered areas of low-level hypometabolism at the bilateral frontal, left precuneus, occipital and parietal regions on PET scan.


Assuntos
COVID-19 , COVID-19/complicações , Feminino , Cefaleia/etiologia , Humanos , Pessoa de Meia-Idade , Neuroimagem , SARS-CoV-2 , Síndrome , Síndrome de COVID-19 Pós-Aguda
16.
Neuroradiol J ; 35(2): 193-202, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34313179

RESUMO

PURPOSE: Exploration of the effect of chronic recurrent seizures in focal epilepsy on brain volumes has produced many conflicting reports. To determine differences in brain structure in temporal lobe epilepsy (TLE) and extratemporal epilepsy (using frontal lobe epilepsy (FLE) a surrogate) further, we performed a retrospective analysis of a large cohort of patients with seizure-onset zone proven by intracranial monitoring. METHODS: A total of 120 TLE patients, 86 FLE patients, and 54 healthy controls were enrolled in this study. An analysis of variance of voxel-based morphometry (VBM) was used to seek morphometric brain differences among TLE patients, FLE patients, and healthy controls. Additionally, a vertex-based surface analysis was utilized to analyze the hippocampus and thalamus. Significant side-specific differences in hippocampal gray matter volume were present between the left TLE (LTLE), right TLE RTLE (RTLE), and control groups (p<0.05, family-wise error (FWE) corrected). RESULTS: Vertex analyses revealed significant volume reduction in inferior parts of the left hippocampus in the LTLE group and lateral parts of the right hippocampus in the RTLE group compared to controls (p<0.05, FWE corrected). Significant differences were also detected between the LTLE and control group in the bilateral medial and inferior thalamus (p<0.05, FWE corrected). FLE patients did not exhibit focal atrophy of gray matter across the brain. CONCLUSION: Our results highlight the variation in morphometric lateralized changes in the brain between different epilepsy onset zones, providing critical insight into the natural history of people with drug-resistant focal epilepsies.


Assuntos
Epilepsia do Lobo Frontal , Epilepsia do Lobo Temporal , Encéfalo/diagnóstico por imagem , Epilepsia do Lobo Frontal/diagnóstico por imagem , Epilepsia do Lobo Temporal/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Estudos Retrospectivos , Lobo Temporal
18.
Epilepsia ; 62(10): e158-e164, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34418083

RESUMO

There is a paucity of data to guide anterior nucleus of the thalamus (ANT) deep brain stimulation (DBS) with brain sensing. The clinical Medtronic Percept DBS device provides constrained brain sensing power within a frequency band (power-in-band [PIB]), recorded in 10-min averaged increments. Here, four patients with temporal lobe epilepsy were implanted with an investigational device providing full bandwidth chronic intracranial electroencephalogram (cEEG) from bilateral ANT and hippocampus (Hc). ANT PIB-based seizure detection was assessed. Detection parameters were cEEG PIB center frequency, bandwidth, and epoch duration. Performance was evaluated against epileptologist-confirmed Hc seizures, and assessed by area under the precision-recall curve (PR-AUC). Data included 99 days of cEEG, and 20, 278, 3, and 18 Hc seizures for Subjects 1-4. The best detector had 7-Hz center frequency, 5-Hz band width, and 10-s epoch duration (group PR-AUC = .90), with 75% sensitivity and .38 false alarms per day for Subject 1, and 100% and .0 for Subjects 3 and 4. Hc seizures in Subject 2 did not propagate to ANT. The relative change of ANT PIB was maximal ipsilateral to seizure onset for all detected seizures. Chronic ANT and Hc recordings provide direct guidance for ANT DBS with brain sensing.


Assuntos
Núcleos Anteriores do Tálamo , Estimulação Encefálica Profunda , Epilepsia , Núcleos Anteriores do Tálamo/fisiologia , Epilepsia/terapia , Hipocampo/diagnóstico por imagem , Humanos , Convulsões/diagnóstico , Tálamo
19.
Neurology ; 97(11): e1097-e1109, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34261784

RESUMO

BACKGROUND AND OBJECTIVE: There are few studies comparing lesion evolution across different CNS demyelinating diseases, yet knowledge of this may be important for diagnosis and understanding differences in disease pathogenesis. We sought to compare MRI T2 lesion evolution in myelin oligodendrocyte glycoprotein immunoglobulin G (IgG)-associated disorder (MOGAD), aquaporin 4 IgG-positive neuromyelitis optica spectrum disorder (AQP4-IgG-NMOSD), and multiple sclerosis (MS). METHODS: In this descriptive study, we retrospectively identified Mayo Clinic patients with MOGAD, AQP4-IgG-NMOSD, or MS and (1) brain or myelitis attack; (2) available attack MRI within 6 weeks; and (3) follow-up MRI beyond 6 months without interval relapses in that region. Two neurologists identified the symptomatic or largest T2 lesion for each patient (index lesion). MRIs were then independently reviewed by 2 neuroradiologists blinded to diagnosis to determine resolution of T2 lesions by consensus. The index T2 lesion area was manually outlined acutely and at follow-up to assess variation in size. RESULTS: We included 156 patients (MOGAD, 38; AQP4-IgG-NMOSD, 51; MS, 67) with 172 attacks (brain, 81; myelitis, 91). The age (median [range]) differed between MOGAD (25 [2-74]), AQP4-IgG-NMOSD (53 [10-78]), and MS (37 [16-61]) (p < 0.01) and female sex predominated in the AQP4-IgG-NMOSD (41/51 [80%]) and MS (51/67 [76%]) groups but not among those with MOGAD (17/38 [45%]). Complete resolution of the index T2 lesion was more frequent in MOGAD (brain, 13/18 [72%]; spine, 22/28 [79%]) than AQP4-IgG-NMOSD (brain, 3/21 [14%]; spine, 0/34 [0%]) and MS (brain, 7/42 [17%]; spine, 0/29 [0%]) (p < 0.001). Resolution of all T2 lesions occurred most often in MOGAD (brain, 7/18 [39%]; spine, 22/28 [79%]) than AQP4-IgG-NMOSD (brain, 2/21 [10%]; spine, 0/34 [0%]) and MS (brain, 2/42 [5%]; spine, 0/29 [0%]) (p < 0.01). There was a larger median (range) reduction in T2 lesion area in mm2 on follow-up axial brain MRI with MOGAD (213 [55-873]) than AQP4-IgG-NMOSD (104 [0.7-597]) (p = 0.02) and MS (36 [0-506]) (p < 0.001) and the reductions in size on sagittal spine MRI follow-up in MOGAD (262 [0-888]) and AQP4-IgG-NMOSD (309 [0-1885]) were similar (p = 0.4) and greater than in MS (23 [0-152]) (p < 0.001). DISCUSSION: The MRI T2 lesions in MOGAD resolve completely more often than in AQP4-IgG-NMOSD and MS. This has implications for diagnosis, monitoring disease activity, and clinical trial design, while also providing insight into pathogenesis of CNS demyelinating diseases.


Assuntos
Encéfalo/patologia , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/patologia , Imageamento por Ressonância Magnética , Adolescente , Adulto , Idoso , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Estudos Retrospectivos , Adulto Jovem
20.
Interv Neuroradiol ; 27(6): 781-787, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33853441

RESUMO

INTRODUCTION: There is increased interest in the use of artificial intelligence-based (AI) software packages in the evaluation of neuroimaging studies for acute ischemic stroke. We studied whether, compared to standard image interpretation without AI, Brainomix e-ASPECTS software improved interobserver agreement and accuracy in detecting ASPECTS regions affected in anterior circulation LVO. METHODS: We included 60 consecutive patients with anterior circulation LVO who had TICI 3 revascularization within 60 minutes of their baseline CT. A total of 16 readers, including senior neuroradiologists, junior neuroradiologists and vascular neurologists participated. Readers interpreted CT scans on independent workstations and assessed final ASPECTS and evaluated whether each individual ASPECTS region was affected. Two months later, readers again evaluated the CT scans, but with assistance of e-ASPECTS software. We assessed interclass correlation coefficient for total ASPECTS and interobserver agreement with Fleiss' Kappa for each ASPECTS region with and without assistance of the e-ASPECTS. We also assessed accuracy for the readers with and without e-ASPECTS assistance. In our assessment of accuracy, ground truth was the 24 hour CT in this cohort of patients who had prompt and complete revascularization. RESULTS: Interclass correlation coefficient for total ASPECTS without e-ASPECTS assistance was 0.395, indicating fair agreement compared, to 0.574 with e-ASPECTS assistance, indicating good agreement (P < 0.01). There was significant improvement in inter-rater agreement with e-ASPECTS assistance for each individual region with the exception of M6 and caudate. The e-ASPECTS software had higher accuracy than the overall cohort of readers (with and without e-ASPECTS assistance) for every region except the caudate. CONCLUSIONS: Use of Brainomix e-ASPECTS software resulted in significant improvements in inter-rater agreement and accuracy of ASPECTS score evaluation in a large group of neuroradiologists and neurologists. e-ASPECTS software was more predictive of final infarct/ASPECTS than the overall group interpreting the CT scans with and without e-ASPECTS assistance.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Inteligência Artificial , Isquemia Encefálica/diagnóstico por imagem , Humanos , Variações Dependentes do Observador , Reprodutibilidade dos Testes , Estudos Retrospectivos , Software , Acidente Vascular Cerebral/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA